
Introduction to Programming
Week 9

Magnus Madsen

Week 9: Outline

• Object-Oriented Programming

‣ Classes and Objects

‣ Constructors and Methods

‣ Access Modifiers and Encapsulation

‣ Static Members

‣ References and Aliasing

‣ Enums

• Code Style

• Live Programming

1 / 98

Quote of the Week

“Object-oriented programming is a method of implementation in which programs are

organized as cooperative collections of objects, each of which represents an instance of some

class, and whose classes are all members of a hierarchy of classes united via inheritance

relationships.”

— Grady Booch

2 / 98

Epigram of the Week

“Programmers must avoid leaving false clues that obscure the meaning of code.”

— Robert C. Martin

3 / 98

Object-Oriented Programming

Object-Oriented Programming

We now introduce Object-Oriented Programming (OOP)

In OOP, classes define data types, and objects are their instances.

Informally, classes are blueprints and objects are what we build from them.

5 / 98

Why Object-Oriented Programming?

Building large software requires abstraction. Abstraction means:

• Reveal only relevant information.

• Hide irrelevant implementation details.

OOP achieves this by bundling data and operations into classes.

Result: We can use data types without knowing their internal implementation!

6 / 98

Key Ideas in OOP

Objects = Identity + State + Behavior

Let us break it down:

Identity: Every object is unique and distinct from others.

State: Every object stores its own data (its fields).

Behavior: Every object has a collection of operations it can perform (its methods).

7 / 98

Classes and Objects

Introduction to Classes

In Java, we define a class using the class keyword.

A class contains:

Fields: Variables that store the object’s state (its data).

Constructors: Special methods that are used to create new instances of the class.

Methods: Functions that define the object’s behavior (its operations).

Together, these components make up the class definition.

9 / 98

Example: Declaring a Class

We can declare a class to model a bank account:

public class BankAccount {

 // Fields

 private final String name;

 private double balance;

 private double rate;

 // Constructor

 public BankAccount(String name, double balance) {

 this.name = name;

 this.balance = balance;

 this.rate = 0.05;

 }

}

Remark: We use this to refer to

the fields and methods of the class.

Note: The name of the constructor must match the name of the class.

10 / 98

Example: Creating an Object

We can create a “fresh” BankAccount object using the new keyword:

BankAccount checking = new BankAccount("Magnus' Checking", 42.0);

11 / 98

Example: Creating an Object

We can create a “fresh” BankAccount object using the new keyword:

BankAccount checking = new BankAccount("Magnus' Checking", 42.0);

We can create more accounts as needed:

BankAccount savings = new BankAccount("Magnus' Savings", 500.0);

Note: We have two objects. Each object has its own name, balance, and rate.

11 / 98

Constructor Overloading (1/2)

A class can have multiple constructors using overloading:

public BankAccount(String name) {

 this.name = name;

 this.balance = 0;

 this.rate = 0.05;

}

public BankAccount(String name, double balance) {

 this.name = name;

 this.balance = balance;

 this.rate = 0.05;

}

Remark: A constructor should

ensure that all fields of an object

are initialized, though it does not

necessarily need to receive all of

them as parameters.

12 / 98

Constructor Overloading (2/2)

Recall, we learned about method overloading in Week 6.

Constructor overloading follows the same principle:

• We can overload based on the number of formal parameters (arity).

• We can overload based on the type of the formal parameters.

Upshot: We can allow an object of a class to be constructed in multiple ways.

Every Java class must have at least one constructor.

• If we fail to provide one, Java automatically inserts a default empty constructor.

13 / 98

Instance Methods (1/2)

We can define instance methods to access or modify fields:

public double getBalance() {

 return this.balance;

}

public void setRate(double newRate) {

 this.rate = newRate;

}

We call such methods getters and setters (more on that later).

14 / 98

Instance Methods (2/2)

We use instance methods to define the behavior of an object:

public void depositBalance(double amount) {

 this.balance = this.balance + amount;

}

public void transferTo(BankAccount dst, double amount) {

 dst.depositBalance(amount);

 this.balance = this.balance - amount;

}

15 / 98

Using Objects

Object Creation

An instance of a class is called an object.
• We create an instance using the new operator.

• Every object has its own identity and its own state.

public class Main {

 public static void main(String[] args) {

 BankAccount account1 = new BankAccount("Checking");

 BankAccount account2 = new BankAccount("Checking");

 BankAccount account3 = new BankAccount("Savings", 100.0);

 }

}

Here we have three independent objects. Two of them happen to just have the same name.

17 / 98

Example: Invoking Instance Methods (1/2)

We invoke (call) a method on an object by writing: object.method(...).

For example, we can write:

BankAccount checking = new BankAccount("Checking", 100.0);

BankAccount savings = new BankAccount("Savings", 200.0);

checking.deposit(500);

savings.deposit(500);

18 / 98

Example: Invoking Instance Methods (2/2)

We can also write:

BankAccount checking = new BankAccount("Checking", 100.0);

BankAccount savings = new BankAccount("Savings", 200.0);

checking.transferTo(savings, 100.0);

Here we call the instance method transferTo on the checking object passing the savings

object as an argument.

19 / 98

Mutable vs. Immutable Objects

We distinguish between two kinds of objects:

• A mutable object can have its state changed after creation.

• A immutable object cannot have its state changed after creation.

Examples:

• BankAccount is a mutable object: we can call methods like deposit() to change its balance

(i.e. internal state).

• String is an immutable object: methods like trim() and toUpperCase() return a new

String rather than modifying the original.

20 / 98

Method Chaining

In Java, Strings are (immutable) objects with many useful instance methods.

For example, we can write:

String s1 = " hello world! ";

String s2 = s1.trim();

String s3 = s2.toUpperCase();

StdOut.println(s3) // Prints: "HELLO WORLD!"

Using method chaining we can also write:

String s = " hello world! ".trim().toUpperCase();

StdOut.println(s) // Prints: "HELLO WORLD!"

21 / 98

What is final?

We can use the final keyword to declare that the value of a field cannot be changed after it

has been initialized.

For example, we can enforce that the name of a BankAccount cannot change:

public class BankAccount {

 // Fields

 private final String name;

 private double balance;

 private double rate;

 // ...

}

Note: The final keyword is also used in some other contexts that we shall not concern

ourselves with here.

22 / 98

What is this?

The this keyword refers to the current object,

• i.e., the object whose method or constructor is currently being executed.

Common uses of this:

• Refer to the object’s own fields and methods.

• Pass the current object as an argument to another method.

• Distinguish between fields and parameters with the same name (this.name = name).

23 / 98

Q:

Which fields should be final?

class Book {

 private String isbn;

 private String title;

 private String author;

 private int publicationYear;

 private int pageCount;

 private double rating;

 private int copiesSold;

}

Q:

Should these be mutable or immutable objects?

• A shopping cart

• A postal address

• A calendar date

• A bank transaction

• A playlist

• A stopwatch

Multiple Objects

Multiple Objects

A key feature of object-oriented programming is

that objects collaborate to accomplish their tasks.

Key concepts:

• Objects can call methods on other objects.

• Objects can contain references to other objects as fields.

• This enables delegation: one object can delegate work to another object.

25 / 98

Example: A Customer class (1/2)

We can define a Customer class which uses the BankAccount class:

public class Customer {

 private BankAccount checking;

 private BankAccount savings;

 private BankAccount[] otherBankAccounts = new BankAccount[100];

 public Customer(String name) {

 this.checking = new BankAccount(name + "checking");

 this.savings = new BankAccount(name + "savings");

 }

}

26 / 98

Example: A Customer class (2/2)

We can define methods on Customer that call methods on BankAccount:

public class Customer {

 // ... as on previous slide ...

 public double getTotal() {

 double total = checking.getBalance() + savings.getBalance();

 for (int i = 0; i < otherBankAccounts.length; i++) {

 total += otherBankAccounts[i].getBalance();

 }

 return total;

 }

 public void transferTo(Customer c, double amount) {

 this.savings.transferTo(c.savings, amount);

 }

}

27 / 98

Using Customer

We can now use Customer in our main method:

public static void main(String[] args) {

 Customer c1 = new Customer("Alice");

 Customer c2 = new Customer("Bob");

 c2.transfer(c1, 100.0);

}

28 / 98

Recall: Key Ideas in OOP

Objects = Identity + State + Behavior

For the Customer class we have:

Identity: Each Customer object is distinct, even with the same name.

State: Each Customer has its own checking, savings, and otherBankAccounts fields.

Behavior: Each Customer can perform operations like getTotal() and transferTo().

29 / 98

Static vs. Instance Methods

Static vs. Instance Methods

A static method belongs to the class itself and is not associated with any particular object.

An instance method is called on a specific object and can access that object’s state.

Static method:

int result = Math.max(5, 10);

• Called on class Math

• No access to any object’s state

Instance method:

BankAccount a = new BankAccount("...");

a.deposit(100.0);

• Called on object a

• Has access to a’s state

31 / 98

Static vs. Instance Fields

A static field belongs to the class itself. There is only one copy shared by all objects.

An instance field belongs to each individual object. Every object has its own copy.

Static field:

class BankAccount {

 private static String bankAddress;

}

• All BankAccount objects share one

bankAddress

• Changing it affects all objects

Instance field:

class BankAccount {

 private double balance;

}

• Each BankAccount object has its own

balance

• Different objects have different values

32 / 98

Recall: Memoization

Recall the memoized Fibonacci function.

We can implement it using a class with a static field and static method:

class Fib {

 private static int[] memo = new int[100];

 static int fibMemo(int n) {

 if (n <= 1) return n;

 if (memo[n] != 0) return memo[n];

 memo[n] = fibMemo(n - 1) + fibMemo(n - 2);

 return memo[n];

 }

}

33 / 98

Q:

Which fields should be static? final?

class Employee {

 private String employeeId;

 private String name;

 private double salary;

 private String companyName;

 private int totalEmployees;

}

Q:

What does this print?

class BankAccount {

 private static int nextId = 1;

 private int id;

 private double balance;

 public BankAccount(double balance) {

 this.id = nextId++;

 this.balance = balance;

 }

 public int getId() {

 return this.id;

 }

}

public static void main(String[] args) {

 BankAccount a1 = new BankAccount(100.0);

 BankAccount a2 = new BankAccount(200.0);

 System.out.println(a2.getId());

}

Access Modifiers

What are Access Modifiers?

Access modifiers control who can access the fields and methods of a class.

The two most common access modifiers are:

• public - can be accessed from anywhere

• private - can only be accessed within the class itself

Why do we need them?

• Enforce encapsulation: hide internal implementation details

• Prevent misuse of fields and methods

• Allow us to change internal implementation without breaking external code

35 / 98

Overview: Access Modifiers

Java has four access modifiers that control visibility in different contexts:

Context Private Default Protected Public

Same class ✅️ ✅️ ✅️ ✅️
Same package subclass ❌️ ✅️ ✅️ ✅️
Same package non-subclass ❌️ ✅️ ✅️ ✅️
Different package subclass ❌️ ❌️ ✅️ ✅️
Different package non-subclass ❌️ ❌️ ❌️ ✅️

Remark: A package is pretty much like a directory.

36 / 98

Example: Access Modifier

Recall that the balance field in BankAccount is private.

If we try to access it from outside the BankAccount class we get a compile error:

public class Main {

 public static void main(String[] args) {

 BankAccount account = new BankAccount("Checking");

 account.balance = 1000.0; // ERROR: balance has private access

 }

}

To access or modify balance, we must use public methods like getBalance() or deposit().

37 / 98

Getters and Setters

What are Getters and Setters?

Getters and setters are special methods that provide controlled access to private fields.

• A getter is a method that returns the value of a private field.

• A setter is a method that modifies the value of a private field.

Enforces encapsulation while providing (limited) access to an object’s state.

39 / 98

Example: Getters and Setters

class Person {

 private String ssn;

 private int age;

 public Person(String ssn, int age) {

 this.ssn = ssn;

 this.age = age;

 }

 public String getSsn() {

 return this.ssn;

 }

 public int getAge() {

 return this.age;

 }

 public void setAge(int newAge) {

 if (newAge > 0) {

 this.age = newAge;

 }

 }

}

Key Points:

• The ssn field has a getter but no setter, hence

cannot be changed once assigned.

• The age field has both a getter and setter,

where the setter ensures the value is non-

negative.

• We use getters and setters to enforce:

‣ Encapsulation

‣ Class invariants

40 / 98

Q:

What is wrong here?

class Rectangle {

 private int width;

 private int height;

 public Rectangle(int width, int height) {

 width = width;

 height = height;

 }

}

Null

What is null?

null is a special value that indicates a reference does not point to an object.

• Uninitialized reference variables default to null.

• We can explicitly set a field to null to indicate “no value”.

• We can check if a reference is null using ==.

• Calling a method or accessing a field on null causes a NullPointerException.

42 / 98

Example: Using null

We can use null to represent optional data, such as a middle name that may not exist:

class Person {

 private String firstName;

 private String middleName;

 private String lastName;

 public Person(String firstName, String lastName) {

 this.firstName = firstName;

 this.middleName = null; // No middle name

 this.lastName = lastName;

 }

 public boolean hasMiddleName() {

 return this.middleName != null;

 }

}

43 / 98

The Dreaded NullPointerException

If you try to call a method of a null object, you get a NullPointerException!

Person p = new Person("George", "Martin");

if (p.getMiddleName().contains("RR")) { // Crash!

 System.out.println("Winter is coming! (... eventually)");

}

44 / 98

The Dreaded NullPointerException

If you try to call a method of a null object, you get a NullPointerException!

Person p = new Person("George", "Martin");

if (p.getMiddleName().contains("RR")) { // Crash!

 System.out.println("Winter is coming! (... eventually)");

}

Exception in thread "main" java.lang.NullPointerException: Cannot invoke

"String.contains()" because the return value of "Person.getMiddleName()" is

null at Main.main(Main.java:3)

44 / 98

Tony Hoare on null

Sir Tony Hoare invented null while designing ALGOL. He later said:

“I call it my billion-dollar mistake. It was the invention of the

null reference in 1965. […] This has led to innumerable errors,

vulnerabilities, and system crashes, which have probably caused

a billion dollars of pain and damage in the last forty years.”

45 / 98

Q:
What can you say about this program?

Person p = new Person("Bob", "Johnson");

String fullName = p.firstName + " " + p.middleName + " " + p.lastName;

System.out.println(fullName.trim());

Color Class

Color ADT

47 / 98

Computing with color: monochrome luminance

48 / 98

Computing with color: grayscale

49 / 98

Picture Class

Picture ADT

51 / 98

Picture client example: Grayscale filter

52 / 98

Picture client example: Grayscale filter

53 / 98

Pop quiz 1b on image processing

54 / 98

Pop quiz 1b on image processing

55 / 98

Aliasing

What is Aliasing?

Aliasing occurs when two or more references point to the same object.

Key points:

• Changes made through one reference affect all other references.

• This happens because references store memory addresses, not copies of objects.

• Aliasing applies to arrays, objects, and all reference types.

Aliasing is neither good nor bad; it is just a feature.

57 / 98

Example: Aliasing

We create three variables but only two objects:

BankAccount checking = new BankAccount("Checking", 100.0);

BankAccount savings = new BankAccount("Savings", 200.0);

BankAccount account = checking; // Alias! Points to same object as checking

Now checking and account refer to the same object:

account.deposit(50.0);

System.out.println(checking.getBalance()); // Prints: 150.0

What in the blazes does this do?:

checking.transferTo(account, 75.0);

System.out.println(checking.getBalance()); // Prints: ???

58 / 98

Comparing References (1/2)

The == operator compares references, not the contents of objects.

For primitive types:

• == compares values directly.

For reference types:

• == checks if two references point to the same object in memory.

• It does not compare the contents / fields of the objects.

59 / 98

Comparing References (2/2)

Here is a small example to illustrate:

BankAccount account1 = new BankAccount("Savings", 100.0);

BankAccount account2 = new BankAccount("Savings", 100.0);

BankAccount account3 = account1;

account1 == account2

Returns false - different objects

account1 == account3

Returns true - same object (aliasing)

60 / 98

Q:

What does the following expressions evaluate to?

int x = 5;

int y = 5;

BankAccount a1 = new BankAccount("Checking");

BankAccount a2 = new BankAccount("Checking");

BankAccount a3 = a1;

int[] arr1 = {1, 2, 3};

int[] arr2 = {1, 2, 3};

int[] arr3 = arr1;

• x == y

• a1 == a2

• a1 == a3

• arr1 == arr2

• arr1 == arr3

• arr1[0] == arr2[0]

Enums

What is an Enum?

An enumeration (or enum) is a special data type that represents a fixed set of constants.

Enums restrict a variable to a predefined set of values.

Examples:

• Days of the week (Monday, Tuesday, …)

• Card suits (Hearts, Diamonds, Clubs, Spades)

• Directions (North, South, East, West)

• Traffic light states (Red, Yellow, Green)

Enums increase readability and type-safety by preventing invalid values.

62 / 98

Example: TrafficLight

We can define an enum for traffic light states:

public enum TrafficLight {

 RED, YELLOW, GREEN

}

We can use the enum as follows:

public static void getAction(TrafficLight light) {

 if (light == TrafficLight.RED) {

 System.out.println("Stop!");

 } else if (light == TrafficLight.GREEN) {

 System.out.println("Go!");

 }

}

63 / 98

Example: DayOfWeek

We can define an enum for days of the week:

public enum DayOfWeek {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

We can use the enum as follows:

public static boolean isWeekend(DayOfWeek day) {

 return day == DayOfWeek.SATURDAY || day == DayOfWeek.SUNDAY;

}

64 / 98

Non-Example: Planets

We can define an enum for the planets in our solar system:

public enum Planet {

 MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE

}

Problem: What about Pluto? It used to be a planet, but is now classified as a dwarf planet.

65 / 98

Q:
When would you use an enum and when a class?

• Coffee sizes

• Email messages

• Game difficulty

• Hotel booking

• Flight seats

Enum Methods

Every Java enum comes with a collection of built-in methods:

Method Description

String name() Returns the name of the enum constant

int ordinal() Returns the position of the constant (starting from 0)

Type[] values() Returns an array of all enum constants

Type valueOf(String) Converts a string to the corresponding enum constant

66 / 98

Q:
How many values does the following enum have?

enum Season {

 SPRING, SUMMER, FALL, WINTER

}

Garbage Collection

Garbage Collection

In other languages (C, C++):

• Programmers manually allocate and deallocate memory

• Must remember to free memory when done

• Easy to make mistakes (memory leaks, crashes)

In Java:

• Automatic garbage collection

• Java tracks when objects are no longer referenced

• Memory is automatically freed

68 / 98

Example: Garbage Collection

Customer c = new Customer("Alice");

c = null;

69 / 98

Code Style

What is Good Code Style and Why Does it Matter?

Good code style makes programs easier to read, understand, and maintain.

Why does it matter?

• Code is read much more often than it is written.

• Other programmers (including future you!) need to understand your code.

• Consistent style reduces bugs and improves collaboration.

Key principles:

• Use descriptive names and follow naming conventions.

• Organize code consistently.

• Keep methods short and focused.

71 / 98

The Broken Windows Theory

The Broken Windows Theory:

A building with one broken window will soon

have all its windows broken.

When applied to software: low quality code encourages more low quality code.

72 / 98

Example: Good vs Bad Naming

Bad naming:

class bank {

 int number;

 double b;

 int get() {

 return number;

 }

 void send(double a) {

 b += a;

 }

}

Good naming:

class BankAccount {

 private int accountNumber;

 private double balance;

 int getAccountNumber() {

 return accountNumber;

 }

 void deposit(double amount) {

 balance += amount;

 }

}

73 / 98

Access Modifiers Best Practices

Key Principles:

• All state (i.e. fields) should be private.

• All access must go through getters and setters.

• Do not expose internal details.

• Do not offer setters for fields that do not change.

• All setters must validate their data.

74 / 98

Code Organization

Organize class members in this order:

1. Fields (instance variables)

2. Constructors

3. Methods (getters, setters, then other methods)

Keep methods short:

• Each method should do one thing well.

• If a method is too long, split it into smaller methods.

• Aim for methods that fit on one screen.

Use whitespace:

• Blank lines between methods.

• Consistent indentation (usually 4 spaces or 1 tab).

75 / 98

Example: Good Code Style

class Student {

 // 1. Fields

 private final String studentId;

 private String name;

 private int grade;

 // 2. Constructor

 public Student(String studentId,

 String name) {

 this.studentId = studentId;

 this.name = name;

 this.grade = 0;

 }

 // 3. Getters

 public String getStudentId() {

 return this.studentId;

 }

 // ... continued

 // ... continued

 public String getName() {

 return this.name;

 }

 public int getGrade() {

 return this.grade;

 }

 // 4. Setters

 public void setGrade(int newGrade) {

 if (newGrade >= 0 && newGrade <= 100) {

 this.grade = newGrade;

 }

 }

 // 5. Other methods

 public boolean isPassing() {

 return this.grade >= 50;

 }

}

76 / 98

Example I: Good Documentation

/**

 * Perform a binary search of a range of a char array for a key. The range

 * must be sorted (as by the <code>sort(char[], int, int)</code> method) -

 * if it is not, the behaviour of this method is undefined, and may be an

 * infinite loop. If the array contains the key more than once, any one of

 * them may be found. Note: although the specification allows for an infinite

 * loop if the array is unsorted, it will not happen in this implementation.

 *

 * @param a the array to search (must be sorted)

 * @param low the lowest index to search from.

 * @param hi the highest index to search to.

 * @param key the value to search for

 * @return the index at which the key was found, or -n-1 if it was not

 * found, where n is the index of the first value higher than key or

 * a.length if there is no such value.

 * @throws IllegalArgumentException if <code>low > hi</code>

 * @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or

 * <code>hi > a.length</code>.

 */

public static int binarySearch(char[] a, int low, int hi, char key) { ... }

77 / 98

Example II: Good Documentation

public static boolean equals(int[] a1, int[] a2) {

 // Quick test which saves comparing elements of the same array, and also

 // catches the case that both are null.

 if (a1 == a2) {

 return true;

 }

 if (null == a1 || null == a2) {

 return false;

 }

 // If they're the same length, test each element

 if (a1.length == a2.length) {

 int i = a1.length;

 // ... omitted ...

 return true;

 }

 return false;

}

78 / 98

Bad Code Style

Code Style

What is the problem here?

80 / 98

Code Style

What is the problem here?

81 / 98

Code Style

What is the problem here?

82 / 98

Code Style

What is the problem here?

83 / 98

Code Style

What is the problem here?

 }

 }

 }

 }

84 / 98

Code Style

What is the problem here?

 }

 }

 }

 }

The T.A. described this as indentation madness.

84 / 98

Epilogue

Error of the Week (1/3)

What is the problem here?

public class Student {

 private String firstName;

 private String lastName;

 public Student(String firstName) {

 this.firstName = firstName;

 }

 int nameLength() {

 return firstName.length() +

lastName.length();

 }

 public static void main(String[] args) {

 Student s = new Student("Alice");

 int x = s.nameLength();

 }

}

86 / 98

Error of the Week (1/3)

What is the problem here?

public class Student {

 private String firstName;

 private String lastName;

 public Student(String firstName) {

 this.firstName = firstName;

 }

 int nameLength() {

 return firstName.length() +

lastName.length();

 }

 public static void main(String[] args) {

 Student s = new Student("Alice");

 int x = s.nameLength();

 }

}

Exception in thread "main"

java.lang.NullPointerException: Cannot

invoke "String.length()" because

"this.lastName" is null

 at Student.nameLength(Student.java:11)

 at Student.main(Student.java:16)

86 / 98

Error of the Week (2/3)

What is the problem here?

public class Student {

 private final String firstName;

 private final String lastName;

 public Student(String firstName, String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public static void main(String[] args) {

 Student s = new Student("Alice", "Ross");

 }

}

87 / 98

Error of the Week (2/3)

What is the problem here?

public class Student {

 private final String firstName;

 private final String lastName;

 public Student(String firstName, String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public static void main(String[] args) {

 Student s = new Student("Alice", "Ross");

 }

}

java: cannot assign a value to

final variable firstName

87 / 98

Error of the Week (3/3)

What is the problem here?

public class Teacher {

 Student[] students;

 int totalGrade() {

 int total = 0;

 for (int i = 0; i < students.length; i++) {

 total += students[i].grade;

 }

 return total;

 }

}

public class Student {

 private final String name;

 private int grade = 0;

 public Student(String name) {

 this.name = name;

 }

 public int getGrade() {

 return this.grade;

 }

}

88 / 98

Error of the Week (3/3)

What is the problem here?

public class Teacher {

 Student[] students;

 int totalGrade() {

 int total = 0;

 for (int i = 0; i < students.length; i++) {

 total += students[i].grade;

 }

 return total;

 }

}

public class Student {

 private final String name;

 private int grade = 0;

 public Student(String name) {

 this.name = name;

 }

 public int getGrade() {

 return this.grade;

 }

}

java: grade has private access in Student

88 / 98

Live Programming

Live Programming

• BankAccount and Customer

‣ with joint account

• Null

90 / 98

Turtle Graphics

ADT for turtle graphics

92 / 98

Turtle graphics implementation: Test client

93 / 98

Turtle graphics implementaiton: Instance variables and constructor

94 / 98

Turtle implementation: Methods

95 / 98

Turtle implementation

96 / 98

Turtle client: N-gon

97 / 98

Turtle client: Spira Mirabilis

98 / 98

	Week 9: Outline
	Quote of the Week
	Epigram of the Week
	Object-Oriented Programming
	Object-Oriented Programming
	Why Object-Oriented Programming?
	Key Ideas in OOP

	Classes and Objects
	Introduction to Classes
	Example: Declaring a Class
	Example: Creating an Object
	Constructor Overloading (1/2)
	Constructor Overloading (2/2)
	Instance Methods (1/2)
	Instance Methods (2/2)

	Using Objects
	Object Creation
	Example: Invoking Instance Methods (1/2)
	Example: Invoking Instance Methods (2/2)
	Mutable vs. Immutable Objects
	Method Chaining
	What is final?
	What is this?
	Which fields should be final?
	Should these be mutable or immutable objects?

	Multiple Objects
	Multiple Objects
	Example: A Customer class (1/2)
	Example: A Customer class (2/2)
	Using Customer
	Recall: Key Ideas in OOP

	Static vs. Instance Methods
	Static vs. Instance Methods
	Static vs. Instance Fields
	Recall: Memoization
	Which fields should be static? final?
	What does this print?

	Access Modifiers
	What are Access Modifiers?
	Overview: Access Modifiers
	Example: Access Modifier

	Getters and Setters
	What are Getters and Setters?
	Example: Getters and Setters
	What is wrong here?

	Null
	What is null?
	Example: Using null
	The Dreaded NullPointerException
	Tony Hoare on null
	What can you say about this program?

	Color Class
	Picture Class
	Aliasing
	What is Aliasing?
	Example: Aliasing
	Comparing References (1/2)
	Comparing References (2/2)
	What does the following expressions evaluate to?

	Enums
	What is an Enum?
	Example: TrafficLight
	Example: DayOfWeek
	Non-Example: Planets
	When would you use an enum and when a class?
	Enum Methods
	How many values does the following enum have?

	Garbage Collection
	Garbage Collection
	Example: Garbage Collection

	Code Style
	What is Good Code Style and Why Does it Matter?
	The Broken Windows Theory
	Example: Good vs Bad Naming
	Access Modifiers Best Practices
	Code Organization
	Example: Good Code Style
	Example I: Good Documentation
	Example II: Good Documentation

	Bad Code Style
	Code Style
	Code Style
	Code Style
	Code Style
	Code Style

	Epilogue
	Error of the Week (1/3)
	Error of the Week (2/3)
	Error of the Week (3/3)

	Live Programming
	Live Programming

	Turtle Graphics

