Introduction to Programming
Week 9

Magnus Madsen

Week 9: Outline

« Object-Oriented Programming
» Classes and Objects
Constructors and Methods
Access Modifiers and Encapsulation
Static Members
References and Aliasing

v

v

v

v

» Enums
« Code Style

« Live Programming

1/98

Quote of the Week

“Object-oriented programming is a method of implementation in which programs are
organized as cooperative collections of objects, each of which represents an instance of some
class, and whose classes are all members of a hierarchy of classes united via inheritance
relationships.”

— Grady Booch

2/98

Epigram of the Week

“Programmers must avoid leaving false clues that obscure the meaning of code”

— Robert C. Martin

3/98

Object-Oriented Programming

Object-Oriented Programming

We now introduce Object-Oriented Programming (OOP)

In OOP, classes define data types, and objects are their instances.

Informally, classes are blueprints and objects are what we build from them.

5/98

Why Object-Oriented Programming?

Building large software requires abstraction. Abstraction means:
 Reveal only relevant information.
- Hide irrelevant implementation details.

OOP achieves this by bundling data and operations into classes.

Result: We can use data types without knowing their internal implementation!

6/98

Key Ideas in OOP

Objects = Identity + State + Behavior

Let us break it down:

Identity: Every object is unique and distinct from others.
State: Every object stores its own data (its fields).

Behavior: Every object has a collection of operations it can perform (its methods).

7/98

Classes and Objects

Introduction to Classes

In Java, we define a class using the class keyword.

A class contains:

Fields: Variables that store the object’s state (its data).
Constructors: Special methods that are used to create new instances of the class.

Methods: Functions that define the object’s behavior (its operations).

Together, these components make up the class definition.

9/98

Example: Declaring a Class

We can declare a class to model a bank account:

| Remark: We use this to refer to
public class BankAccount {

// Fields the fields and methods of the class.
private final String name;

private double balance;

private double rate;

// Constructor

public BankAccount(String name, double balance) {
this.name = name;
this.balance = balance;
this.rate = 0.05;

Note: The name of the constructor must match the name of the class.

10/ 98

Example: Creating an Object

We can create a “fresh” BankAccount object using the new keyword:

BankAccount checking = new BankAccount("Magnus' Checking", 42.0);

11/ 98

Example: Creating an Object

We can create a “fresh” BankAccount object using the new keyword:

BankAccount checking = new BankAccount("Magnus' Checking", 42.0);

We can create more accounts as needed:
BankAccount savings = new BankAccount("Magnus' Savings", 500.0);

Note: We have two objects. Each object has its own name, balance, and rate.

11/ 98

Constructor Overloading (1/2)

A class can have multiple constructors using overloading;:

_ _ Remark: A constructor should
public BankAccount(String name) {

this.name = name;
this.balance = 0; are initialized, though it does not

ensure that all fields of an object

this.rate = 0.05; necessarily need to receive all of

: them as parameters.

public BankAccount(String name, double balance) {
this.name = name;
this.balance = balance;
this.rate = 0.05;

12 /98

Constructor Overloading (2/2)

Recall, we learned about method overloading in Week 6.
Constructor overloading follows the same principle:

« We can overload based on the number of formal parameters (arity).
« We can overload based on the type of the formal parameters.

Upshot: We can allow an object of a class to be constructed in multiple ways.

Every Java class must have at least one constructor.
o If we fail to provide one, Java automatically inserts a default empty constructor.

13 /98

Instance Methods (1/2)

We can define instance methods to access or modify fields:

public double getBalance() {
return this.balance;

}

public void setRate(double newRate) {
this.rate = newRate;

}

We call such methods getters and setters (more on that later).

14/ 98

Instance Methods (2/2)

We use instance methods to define the behavior of an object:

public void depositBalance(double amount) {
this.balance = this.balance + amount;

}

public void transferTo(BankAccount dst, double amount) {
dst.depositBalance(amount);
this.balance = this.balance - amount;

15/ 98

Using Objects

Object Creation

An instance of a class is called an object.
« We create an instance using the new operator.
- Every object has its own identity and its own state.

public class Main {
public static void main(String[] args) {
BankAccount accountl = new BankAccount("Checking");
BankAccount account2 = new BankAccount("Checking");
BankAccount account3 = new BankAccount("Savings", 100.0);

Here we have three independent objects. Two of them happen to just have the same name.

17/ 98

Example: Invoking Instance Methods (1/2)

We invoke (call) a method on an object by writing: object.method(...).
For example, we can write:
BankAccount checking = new BankAccount("Checking", 100.0);
BankAccount savings = new BankAccount("Savings", 200.0);

checking.deposit(500);
savings.deposit(500);

18 /98

Example: Invoking Instance Methods (2/2)

We can also write:

BankAccount checking = new BankAccount("Checking", 100.0);
BankAccount savings = new BankAccount("Savings", 200.0);
checking.transferTo(savings, 100.0);

Here we call the instance method transferTo on the checking object passing the savings
object as an argument.

19/ 98

Mutable vs. Immutable Objects

We distinguish between two kinds of objects:

- A mutable object can have its state changed after creation.
- A immutable object cannot have its state changed after creation.

Examples:

- BankAccount is a mutable object: we can call methods like deposit () to change its balance
(i.e. internal state).

« String is an immutable object: methods like trim() and toUpperCase() return a new
String rather than moditying the original.

20 /98

Method Chaining

In Java, Strings are (immutable) objects with many useful instance methods.

For example, we can write:

String sl = " hello world! ";
String s2 = sl.trim();
String s3 = s2.toUpperCase();

StdOut.println(s3) // Prints: "HELLO WORLD!'"

Using method chaining we can also write:

String s = " hello world! “.trim().toUpperCase();
StdOut.println(s) // Prints: "HELLO WORLD!"

21/98

What is finat?

We can use the final keyword to declare that the value of a field cannot be changed after it
has been initialized.

For example, we can enforce that the name of a BankAccount cannot change:

public class BankAccount {
// Fields
private final String name;
private double balance;
private double rate;

/] ...

Note: The final keyword is also used in some other contexts that we shall not concern
ourselves with here.

22 /98

What is £his?

The this keyword refers to the current object,

. i.e., the object whose method or constructor is currently being executed.

Common uses of this:

« Refer to the object’s own fields and methods.

o Pass the current object as an argument to another method.

o Distinguish between fields and parameters with the same name (this.name = name).

23 /98

Which fields should be finat?

class Book {
private String 1isbn;
private String title;
private String author;

private int publicationYear;
private int pageCount;
private double rating;
private int copiesSold;

Should these be mutable or immutable objects?

« A shopping cart

A postal address
A calendar date
A bank transaction

A playlist

A stopwatch

Multiple Objects

Multiple Objects

A key feature of object-oriented programming is
that objects collaborate to accomplish their tasks.

Key concepts:

« Objects can call methods on other objects.

« Objects can contain references to other objects as fields.

o This enables delegation: one object can delegate work to another object.

25/98

Example: A Customer class (1/2)

We can define a Customer class which uses the BankAccount class:

public class Customer {
private BankAccount checking;
private BankAccount savings;
private BankAccount[] otherBankAccounts = new BankAccount[100];

public Customer(String name) {

this.checking = new BankAccount(name + "checking");
this.savings = new BankAccount(name + "savings");

26 /98

Example: A Customer class (2/2)

We can define methods on Customer that call methods on BankAccount:

public class Customer {
// ... as on previous slide ...
public double getTotal() {

double total = checking.getBalance() + savings.getBalance();
for (int 1 = 0; 1 < otherBankAccounts.length; i++) {
total += otherBankAccounts[i].getBalance();

}

return total;

}

public void transferTo(Customer c, double amount) {
this.savings.transferTo(c.savings, amount);

}

27 /98

Using Customer

We can now use Customer in our main method:

public static void main(String[] args) {
Customer cl new Customer("Alice");
Customer c2 new Customer("Bob");
c2.transfer(cl, 100.0);

/

Customer object

BankAccount object

name: "Alicechecking"

BankAccount object

name: "Alicesavings"

/

Customer object

BankAccount object

name: "Bobchecking”

N

ANV

BankAccount object
name: "Bobsavings"

Heap

28 /98

Recall: Key Ideas in OOP

Objects = Identity + State + Behavior

For the Customer class we have:

Identity: Each Customer object is distinct, even with the same name.
State: Each Customer has its own checking, savings, and otherBankAccounts fields.

Behavior: Each Customer can perform operations like getTotal() and transferTo().

29 /98

Static vs. Instance Methods

Static vs. Instance Methods

A static method belongs to the class itself and is not associated with any particular object.
An instance method is called on a specific object and can access that object’s state.

Static method: Instance method:

int result = Math.max(5, 10); BankAccount a = new BankAccount("..."):;
a.deposit(100.0);

« Called on class Math o Called on object a
« No access to any object’s state - Has access to a’s state

31/98

Static vs. Instance Fields

A static field belongs to the class itself. There is only one copy shared by all objects.

An instance field belongs to each individual object. Every object has its own copy.

Static field: Instance field:

class BankAccount {

class BankAccount {
private static String bankAddress; private double balance;
}

}

« All BankAccount objects share one
bankAddress

- Changing it affects all objects

« Each BankAccount object has its own
balance

- Different objects have different values

32/98

Recall: Memoization

Recall the memoized Fibonacci function.

We can implement it using a class with a static field and static method:

class Fib {
private static int[] memo = new int[100];

static int fibMemo(int n) {
if (n <= 1) return n;
it (memo[n] '= 0) return memo[n];
memo[n] = fibMemo(n - 1) + fibMemo(n - 2);
return memo[n];

33/98

Which fields should be static? finat?

class Employee {
private String employeeld;
private String name;

private double salary;
private String companyName;
private int totalEmployees;

What does this print?

class BankAccount {
private static int nextId = 1;
private int id;
private double balance;
public BankAccount(double balance) {
this.id = nextId++;
this.balance = balance;
}
public int getId() {
return this.id;
}
}

public static void main(String[] args) {
BankAccount al = new BankAccount(100.0);
BankAccount a2 = new BankAccount(200.0);
System.out.println(a2.getId());

Access Modifiers

What are Access Modifiers?

Access modifiers control who can access the fields and methods of a class.

The two most common access modifiers are:
 public - can be accessed from anywhere
 private - can only be accessed within the class itself

Why do we need them?

 Enforce encapsulation: hide internal implementation details
 Prevent misuse of fields and methods

« Allow us to change internal implementation without breaking external code

35/98

Overview: Access Modifiers

Java has four access modifiers that control visibility in different contexts:

Context Private Default Protected Public

Same class
Same package subclass X

Same package non-subclass X

Different package subclass X

XXNSNS
XNNNN
SUISEISISES

Different package non-subclass ¢

Remark: A package is pretty much like a directory:.

36 /98

Example: Access Modifier

Recall that the balance field in BankAccount is private.

If we try to access it from outside the BankAccount class we get a compile error:

public class Main {
public static void main(String[] args) {
BankAccount account = new BankAccount("Checking");
account.balance = 1000.0; // ERROR: balance has private access

To access or modify balance, we must use public methods like getBalance() or deposit().

37 /98

Getters and Setters

What are Getters and Setters?

Getters and setters are special methods that provide controlled access to private fields.
« A getter is a method that returns the value of a private field.
A setter is a method that modifies the value of a private field.

Enforces encapsulation while providing (limited) access to an object’s state.

39 /98

Example: Getters and Setters

Key Points:

class Person {
private String ssn;

S « The ssn field has a getter but no setter, hence

public Person(String ssn, int age) { cannot be changed once assigned.

EE;:;Z) :;gf « The age field has both a getter and setter,
} where the setter ensures the value is non-
public String getSsn() { negative.

return this.ssn;
} - We use getters and setters to enforce:
public int getAge() { » Encapsulation

return this.age; . .

» Class invariants

}

public void setAge(int newAge) {
if (newAge > 0) {
this.age = newAge;

}

40 / 98

What is wrong here?

class Rectangle {
private int width;
private int height;

public Rectangle(int width, int height) {
width = width;
height = height;

Null

What is putt?

null is a that indicates a reference does not point to an object.

Uninitialized reference variables default to null.

We can explicitly set a field to null to indicate “no value”.

We can check if a reference is null using ==.

Calling a method or accessing a field on null causes a NullPointerException.

42/ 98

Example: Using AULL

We can use null to represent optional data, such as a middle name that may not exist:

class Person {
private String firstName;
private String middleName;
private String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.middleName = null; // No middle name
this.lastName = lastName;

}

public boolean hasMiddleName() {
return this.middleName != null;

}

43 / 98

The Dreaded NulttPointerException

If you try to call a method of a null object, you get a NullPointerException!

Person p = new Person("George", "Martin");

if (p.getMiddleName().contains("RR")) { // Crash!
System.out.println("Winter is coming! (... eventually)");

}

44/ 98

The Dreaded NuttPointerException

If you try to call a method of a null object, you get a NullPointerException!

Person p = new Person("George", "Martin");

if (p.getMiddleName().contains("RR")) { // Crash!
System.out.println("Winter is coming! (... eventually)");

}

Exception in thread "main" java.lang.NullPointerException: Cannot invoke
"String.contains()" because the return value of "Person.getMiddleName()" 1is
null at Main.main(Main.java:3)

44/ 98

Tony Hoare on AUl

Sir Tony Hoare invented null while designing ALGOL. He later said:

“I call it my billion-dollar mistake. It was the invention of the
null reference in 1965. [...] This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years.”

45 / 98

What can you say about this program?

Person p = new Person("Bob", "Johnson");

String fullName = p.firstName + " " + p.middleName + " " + p.lastName;
System.out.println(fullName.trim());

Color Class

Color ADT

Color is a sensation in the eye
from electromagnetic radiation.

examples
R (8 bits) red intensity 255 0 0 0 255 0 119 105

G (8 bits) green intensity 0 255 0 0 255 64 33 105

: Values

B (8 bits) blue intensity 0 0 255 55 128 27 105

il L -- il

public class Color

o _.HE‘.. i

Color(int r, int g, int b)
An ADT allows us to write Java

_ int getRed() red intensity
programs that manipulate color.
int getGreen() green intensity
API (operations) int getBlue() blue intensity
Color brighter() brighter version of this color
Color darker() darker version of this color
String toString() string representation of this color

boolean equals(Color c) s this color the same as c's ?

Computing with color: monochrome luminance

Def. The monochrome luminance of a color quantifies its effective brightness.

NTSC standard formula for luminance: 0.299r + 0.587a + 0.114b.

import java.awt.Color;
public class Luminance

{

public static double Tum(Color c)

{
int r = c.getRed();
int g = c.getGreen();
int b = c.getBlue();
return .299%r + .587%g + .114%b;
}
pubTlic static void main(String[] args)
{
int r = Integer.parselInt(args[0]);
int g = Integer.parselnt(args[1]);
int b = Integer.parselInt(args([2]);
Color ¢ =new Color(r, g, b);
StdOut.printin(Math.round(Tum(c)));
}

% java Luminance 0
52

64 128

examples
red intensity 255 0 0 0 255 O 119 105
green intensity 0 255 O 0 255 64 33 105

blue intensity 0 255 128 27 105
color - -- ---
luminance 150 29 255 52 105

Applications (next)
* Choose colors for displayed text.
» Convert colors to grayscale.

48

Computing with color: grayscale

Goal. Convert colors to grayscale values.

Fact. When all three R, G, and B values are the same,
resulting color is on grayscale from 0 (black) to 255 (white).

Q. What value for a given color?

A. Its luminance!

public static Color toGray(Color c)

{
int y = (int) Math.round(Tum(c));

Color gray = new Color(y, vy, Vy);
return gray;

1.

method for Luminance library

examples
red intensity 255 0 0 0 255 O 119 105
green intensity 0 255 O 0 255 64 33 105

blue intensity 255 55 128 27 105
color - -- ---
luminance 150 29 255 52 105
ocie NN RN

Picture Class

Picture ADT

, column col
. . pixel (0, 0) l
A Picture is a 2D array of pixels. N
row row — |

defined in terms of its ADT values (typical) Values (ZD arrays of CO'OI‘S)

pixel (col, row)

et
<
=

]
=

|<—width—>|

pubTlic class Picture

Picture(String filename) create a picture from a file
An ADT allows us to Picture(int w, int h) create a blank w-by-h picture
write Java programs that _ _ _ _
. . int width() width of the picture
manipulate pictures.
int height() height of the picture
API (operations) color get(int col, 1int row) the color of pixel (col, row)

void set(int col, int row, Color c) set the color of pixel (col, row) to c

void show() display the image in a window

void save(String filename) save the picture to a file

Picture client example: Grayscale filter

Coal. Write a Java program to convert an image to grayscale.

Source: mandrill.jpg % java Grayscale mandrill.jpg I

Picture client example: Grayscale filter

import java.awt.Color;
public class Grayscale
{
public static void main(String[] args)
{
Picture pic = new Picture(args[0]); < create a new picture
for (int col = 0; col < pic.width(); col++)
for (int row = 0; row < pic.height(); row++)
{
Color color = pic.get(col, row);
Color gray = Luminance.toGray(color); |«—+tfill in each pixel
pic.set(col, row, gray);
}
pic.show();
}
}

% java Grayscale mandrill.jpg

Pop quiz 1b on image processing

Q. What is the effect of the following code (not-so-easy question)?

Picture pic = new Picture(args[0]);
for (int col = 0; col < pic.width(); col++)
for (int row = 0; row < pic.height(); row++)
pic.set(col, pic.height()-row-1, pic.get(col, row));
pic.show();

5¢

Pop quiz 1b on image processing

Q. What is the effect of the following code (not-so-easy question)?

Picture pic = new Picture(args([0]);
for (int col = 0; col < pic.width(); col++)
for (int row = 0; row < pic.height(); row++)
pic.set(col, pic.height()-row-1, pic.get(col, row));
pic.show();

A. Tries to turn image upside down, but fails.
An instructive bug!.

Aliasing

What is Aliasing?

Aliasing occurs when two or more references point to the same object.

Key points:
« Changes made through one reference affect all other references.

- This happens because references store memory addresses, not copies of objects.
- Aliasing applies to arrays, objects, and all reference types.

Aliasing is neither good nor bad; it is just a feature.

57 /98

Example: Aliasing

We create three variables but only two objects:

BankAccount checking = new BankAccount("Checking", 100.0);
BankAccount savings = new BankAccount("Savings", 200.0);
BankAccount account checking; // Alias! Points to same object as checking

Now checking and account refer to the same object:

account.deposit(50.0);
System.out.println(checking.getBalance()); // Prints: 150.0

What in the blazes does this do?:

checking.transferTo(account, 75.0);
System.out.println(checking.getBalance()); // Prints: ??2?

58 /98

Comparing References (1/2)

The == operator compares references, not the contents of objects.
For primitive types:

. == compares values directly.

For reference types:

== checks if two references point to the
o It does not compare the contents / fields of the objects.

59/98

Comparing References (2/2)

Here is a small example to illustrate:

BankAccount accountl = new BankAccount("Savings", 100.0);
BankAccount account?2 new BankAccount("Savings", 100.0);

BankAccount account3 = accountl;
accountl == account?2 accountl == account3
Returns false - different objects Returns true - same object (aliasing)

60 / 98

What does the following expressions evaluate to?

int x =
int y =
BankAccount al new BankAccount("Checking");
BankAccount a2 new BankAccount("Checking");

BankAccount a3 al;
int[] arrl = {1, 2, 3};
int[] arr2 = {1, 2, 3};
int[] arr3 arrl;

e X ==Y

e al == a2

« al == a3

arrl == arr2

arrl == arr3
arrl[0] == arr2[0]

Enums

What is an Enum?

An enumeration (or enum) is a special data type that represents a fixed set of constants.
Enums restrict a variable to a predefined set of values.

Examples:

« Days of the week (Monday, Tuesdayj, ...)

o Card suits (Hearts, Diamonds, Clubs, Spades)
« Directions (North, South, East, West)

o Traffic light states (Red, Yellow, Green)

Enums increase readability and type-safety by preventing invalid values.

62 /98

Example: TrafficLight

We can define an enum for traffic light states:

public enum TrafficLight {
RED, YELLOW, GREEN

}

We can use the enum as follows:

public static void getAction(TrafficLight light) {
if (light == TrafficLight.RED) {
System.out.println("Stop!");
} else if (light == TrafficLight.GREEN) {
System.out.println("Go!");

}

63 /98

Example: DayOtWeek

We can define an enum for days of the week:

public enum DayOfWeek {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}
We can use the enum as follows:

public static boolean isWeekend(DayOfWeek day) {
return day == DayOfWeek.SATURDAY || day == DayOfWeek.SUNDAY;

}

64 / 98

Non-Example: Planets

We can define an enum for the planets in our solar system:

public enum Planet {
MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE

}

Problem: What about Pluto? It used to be a planet, but is now classified as a dwarf planet.

65 /98

When would you use an enum and when a class?

o Coffee sizes

Email messages
Game difficulty
Hotel booking
Flight seats

Enum Methods

Every Java enum comes with a collection of built-in methods:

Method Description

String name() Returns the name of the enum constant

int ordinal() Returns the position of the constant (starting from 0)
Typel[] values() Returns an array of all enum constants

Type valueOf(String) Converts a string to the corresponding enum constant

66 / 98

How many values does the following enum have?

enum Season {

SPRING, SUMMER, FALL, WINTER

Garbage Collection

Garbage Collection

In other languages (C, C++):

« Programmers manually allocate and deallocate memory
« Must remember to free memory when done

 Easy to make mistakes (memory leaks, crashes)

In Java:

« Automatic garbage collection

- Java tracks when objects are no longer referenced
« Memory is automatically freed

68 / 98

Example: Garbage Collection

Customer ¢ = new Customer("Alice");
¢ = null;

null

4 NP

BankA\v/object
| name:"/cx\ecking"
N

Vv

cl Custo object

<\ A
</ o ‘ BankA\v/object
nameyft,\avings"
o T

Stack Heap

69 / 98

Code Style

What is Good Code Style and Why Does it Matter?

Good code style makes programs easier to read, understand, and maintain.

Why does it matter?

« Code is read much more often than it is written.

o Other programmers (including future you!) need to understand your code.
- Consistent style reduces bugs and improves collaboration.

Key principles:

« Use descriptive names and follow naming conventions.
 Organize code consistently.

« Keep methods short and focused.

71/ 98

The Broken Windows Theory

The Broken Windows Theory:
A building with one broken window will soon
have all its windows broken.

When applied to software: low quality code encourages more low quality code.

72 /98

Example: Good vs Bad Naming

Bad naming: Good naming;
class bank { class BankAccount {
int number; private int accountNumber;
double b; private double balance;
int get() { int getAccountNumber() {
return number; return accountNumber;
} }
vold send(double a) { void deposit(double amount) {
b += a; balance += amount;
} }
} }

73 /98

Access Modifiers Best Practices

Key Principles:

« All state (i.e. fields) should be private.

o All access must go through getters and setters.

« Do not expose internal details.

« Do not offer setters for fields that do not change.
o All setters must validate their data.

74 / 98

Code Organization

Organize class members in this order:

1. Fields (instance variables)

2. Constructors

3. Methods (getters, setters, then other methods)

Keep methods short:

« Each method should do one thing well.

o If a method is too long, split it into smaller methods.
« Aim for methods that fit on one screen.

Use whitespace:
« Blank lines between methods.
 Consistent indentation (usually 4 spaces or 1 tab).

75/ 98

Example: Good Code Style

class Student { // ... continued
// 1. Fields public String getName() {
private final String studentId; return this.name;
private String name; }

private int grade;
public int getGrade() {

// 2. Constructor return this.grade;
public Student(String studentld, }
String name) {
this.studentId = studentId; // 4. Setters
this.name = name; public void setGrade(int newGrade) {
this.grade = 0; if (newGrade >= 0 && newGrade <= 100) {
} this.grade = newGrade;
}
// 3. Getters }
public String getStudentId() {
return this.studentId; // 5. Other methods
} public boolean isPassing() {
// ... continued return this.grade >= 50;
}
}

76 / 98

Example I: Good Documentation

/**

Perform a binary search of a range of a char array for a key. The range
must be sorted (as by the <code>sort(char[], int, int)</code> method) -

if it is not, the behaviour of this method is undefined, and may be an
infinite loop. If the array contains the key more than once, any one of
them may be found. Note: although the specification allows for an infinite
loop if the array is unsorted, it will not happen in this implementation.

@param a the array to search (must be sorted)

@param low the lowest index to search from.

@param hi the highest index to search to.

@param key the value to search for

@return the index at which the key was found, or -n-1 if it was not
found, where n is the index of the first value higher than key or
a.length if there is no such value.

@throws IllegalArgumentException if <code>low > hi</code>

@throws ArrayIndexQutOfBoundsException if <code>low < O</code> or

<code>hi > a.length</code>.

* X X K X X K KX X X K X X X X% * X

*/
public static int binarySearch(char[] a, int low, int hi, char key) { ... }

77 / 98

Example II: Good Documentation

public static boolean equals(int[] al, int[] a2) {
// Quick test which saves comparing elements of the same array, and also
// catches the case that both are null.
it (al == a2) {
return true;

if (null == al || null == a2) {
return false;

// If they're the same length, test each element
if (al.length == a2.length) {

int i = al.length;

// ... omitted ...

return true;

}

return false;

78 / 98

Bad Code Style

Code Style

What is the problem here?

public class RollLoadedDie {
public static void main(String[] args) {

int result = 0;

double roll = Math.random();
if(roll <= 0.125) result = 1;
else if(roll <= 0.25) result = 2;
else if(roll <= 0.375) result = 3;
else if(roll <= 0.5) result = 4;
else if(roll <= 0.625) result
else result = 6;
System.out.println(result);

Code Style

What is the problem here?

if (isBlack<Math.random())

{
StdDraw.setPenColor(Color.black);
double randomRadius = minRadius + (Math.random() * (maxRadius - minRadius));
StdDraw.filledCircle(Math.random() ,Math.random(), randomRadius);

}

else

{
StdDraw.setPenColor(Color.white);
double randomRadius = minRadius + (Math.random() * (maxRadius - minRadius));
StdDraw.filledCircle(Math.random(),Math.random(), randomRadius);

Code Style

What is the problem here?

class Windchill {

ic static void main(String[] args) {

82 /98

Code Style

What is the problem here?

83 /98

Code Style

What is the problem here?

}

84 /98

Code Style

What is the problem here?

The T.A. described this as indentation madness.

84 /98

Epilogue

Error of the Week (1/3)

What is the problem here?

public class Student {
private String firstName;
private String lastName;

public Student(String firstName) {
this.firstName = firstName;

}

int namelLength() {
return firstName.length() +
lastName. Length();

}

public static void main(String[] args) {
Student s = new Student("Alice");
int x = s.namelLength();

86 /98

Error of the Week (1/3)

What is the problem here?

public class Student {
private String firstName;
private String lastName;

public Student(String firstName) {
this.firstName = firstName;

}

int namelLength() {
return firstName.length() +
lastName. Length();

}

public static void main(String[] args) {

Student s = new Student("Alice");

int x

s.nameLength();

Exception in thread "main"
java.lang.NullPointerException: Cannot
invoke "String.length()" because
"this.lastName" is null
at Student.namelLength(Student.java:11)
at Student.main(Student.java:16)

86 /98

Error of the Week (2/3)

What is the problem here?

public class Student {
private final String firstName;
private final String lastName;

public Student(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public static void main(String[] args) {
Student s = new Student("Alice", "Ross");

}

87 /98

Error of the Week (2/3)

What is the problem here?

public class Student { java: cannot assign a value to
private final String firstName; final variable firstName
private final String lastName;

public Student(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public static void main(String[] args) {
Student s = new Student("Alice", "Ross");

}

87 /98

Error of the Week (3/3)

What is the problem here?

public class Teacher { public class Student {
Student[] students; private final String name;
private int grade = 0;
int totalGrade() {

int total = 0; public Student(String name) {
for (int i = 0; 1 < students.length; i++) { this.name = name;
total += students[i].grade; }
}
return total; public int getGrade() {
} return this.grade;
} }
}

88 /98

Error of the Week (3/3)

What is the problem here?

public class Teacher { public class Student {
Student[] students; private final String name;
private int grade = 0;
int totalGrade() {

int total = 0; public Student(String name) {
for (int i = 0; 1 < students.length; i++) { this.name = name;
total += students[i].grade; }
}
return total; public int getGrade() {
} return this.grade;
} }
}

java: grade has private access in Student

88 /98

Live Programming

Live Programming

« BankAccount and Customer

» with joint account
« Null

90 / 98

Turtle Graphics

ADT for turtle graphics

A turtle is an idealized model of a plotting device.

An ADT allows us to write Java programs that manipulate turtles.

Seymour Papert

1928-
position (x, y) (.5, .5) (.25, .75) (.22,.12)
orientation 90° 135° 10°
Values
D G
)
e
public class Turtle

Turtle(double x0, double y0, double q0)

API (operations) void turnLeft(double delta) rotate delta degrees counterclockwise

void goForward(double step) move distance step, drawing a line
ol

Turtle graphics implementation: Test client

Best practice. Begin by implementing a simple test client. :,T::?S.iU;i'mbleg
methods
public static void main(String[] args)
{
Turtle turtle = new Turtle(0.0, 0.0, 0.0); test client
turtle.goForward(1.0);
turtle.turnLeft(120.0);
turtle.goForward(1.0); % java Turtle I
turtle.turnLeft(120.0);
turtle.goForward(1.0); Note: Client drew triang|s
turtle.turnLeft(120.0); without computing +/3
}

What we expect, once the implementation is done. /

Turtle implementation: Instance variables and constructor

i . instance variables
Instance variables define data-type values.

constructor

Constructors create and initialize new objects.

public class Turtle

{
private double x, vy; inst iabl
private double angle; é”’"'ngéf;g;$¥ﬁg1es
public Turtle(double x0, double y0, double a0)
{
X = X0;
— vO0: position (x, y) (.5,.5) (.75, .75) (.22, .12)
y _Iy ’ 0- orientation 90° 135° 10°
angle = au, Values
} ©
O
} o

9!

Turtle implementation: Methods

Methods define data-type operations (implement APIs).
methods
public class Turtle
{
" :) API
public void turnLeft(double delta)
{ angle += delta; } public class Turtle
?Ubﬁc void goForward(double d) Turtle(double x0, double y0, double g0)
double oldx = x; void turnLeft(double delta)
double oldy = vy; .
! d F d(doubl
X += d * Math.cos(Math.toRadians(angle)); void goForward(double step)
y += d * Math.sin(Math.toRadians(angle));
StdDraw. Tine(oldx, oldy, x, y); //)\(Mr+dcosa,ﬂr+dSM(ﬁ
} d .
- / dsin o
}
(X, yo) d cos «

Turtle implementation

text file named
Turtle.java

public class Turtle

{

private double x, y;

A

private double angle;

public Turtle(double x0, double y0, double a0)
{

instance variables

x = x0; .
y = y0: < constructor
angle = ao0;

}

public void turnLeft(double delta)

{ angle += delta; }

public void goForward(double d)

{
double oldx = x; « methods
double oldy = y;
x += d * Math.cos(Math.toRadians(angle));
y += d * Math.sin(Math.toRadians(angle)); % java Turtle
StdDraw.1ine(oldx, oldy, x, y);

}

public static void main(String[] args)

{
Turtle turtle = new Turtle(0.0, 0.0, 0.0);
turtle.goForward(1.0); turtle.turnLeft(120.0);
turtle.goForward(1.0); turtle.turnLeft(120.0);
turtle.goForward(1.0); turtle.turnLeft(120.0);

«— test client

9¢

Turtle client: N-gon

% java Ngon 3

public class Ngon

{
public static void main(String[] args)
{
int N = Integer.parselInt(args[0]);
double angle = 360.0 / N; % §ava Ngon 7
double step = Math.sin(Math.toRadians(angle/2.0));
Turtle turtle = new Turtle(0.5, 0, angle/2.0);
for (int i =0; i < N; 1++)
{
turtle.goForward(step);
turtle.turnLeft(angle);
}
} % java Ngon 1440
}

Turtle client: Spira Mirabilis

% java Spiral 3 1.2 |

public class Spiral

{ \WV/,
public static void main(String[] args) \\\/ é
{ ////

int N Integer.parselInt(args[0]);
(youb1e decay Doub1e.parseDoub1e(args[1i>;

doubTe angTe = 360.0 / N; % java Spiral 7 1.2|
double step = Math.sin(Math.toRadians(angle/2.0));

Turtle turtle = new Turtle(0.5, 0, angle/2.0);

for Gint i = 05 1 <(10 *)N; i++) \

9

/[
\

(step /= decay;)
turtle.goForward(step);
turtle.turnLeft(angle);

\

% java Spiral 1440 1.0004 |

9

	Week 9: Outline
	Quote of the Week
	Epigram of the Week
	Object-Oriented Programming
	Object-Oriented Programming
	Why Object-Oriented Programming?
	Key Ideas in OOP

	Classes and Objects
	Introduction to Classes
	Example: Declaring a Class
	Example: Creating an Object
	Constructor Overloading (1/2)
	Constructor Overloading (2/2)
	Instance Methods (1/2)
	Instance Methods (2/2)

	Using Objects
	Object Creation
	Example: Invoking Instance Methods (1/2)
	Example: Invoking Instance Methods (2/2)
	Mutable vs. Immutable Objects
	Method Chaining
	What is final?
	What is this?
	Which fields should be final?
	Should these be mutable or immutable objects?

	Multiple Objects
	Multiple Objects
	Example: A Customer class (1/2)
	Example: A Customer class (2/2)
	Using Customer
	Recall: Key Ideas in OOP

	Static vs. Instance Methods
	Static vs. Instance Methods
	Static vs. Instance Fields
	Recall: Memoization
	Which fields should be static? final?
	What does this print?

	Access Modifiers
	What are Access Modifiers?
	Overview: Access Modifiers
	Example: Access Modifier

	Getters and Setters
	What are Getters and Setters?
	Example: Getters and Setters
	What is wrong here?

	Null
	What is null?
	Example: Using null
	The Dreaded NullPointerException
	Tony Hoare on null
	What can you say about this program?

	Color Class
	Picture Class
	Aliasing
	What is Aliasing?
	Example: Aliasing
	Comparing References (1/2)
	Comparing References (2/2)
	What does the following expressions evaluate to?

	Enums
	What is an Enum?
	Example: TrafficLight
	Example: DayOfWeek
	Non-Example: Planets
	When would you use an enum and when a class?
	Enum Methods
	How many values does the following enum have?

	Garbage Collection
	Garbage Collection
	Example: Garbage Collection

	Code Style
	What is Good Code Style and Why Does it Matter?
	The Broken Windows Theory
	Example: Good vs Bad Naming
	Access Modifiers Best Practices
	Code Organization
	Example: Good Code Style
	Example I: Good Documentation
	Example II: Good Documentation

	Bad Code Style
	Code Style
	Code Style
	Code Style
	Code Style
	Code Style

	Epilogue
	Error of the Week (1/3)
	Error of the Week (2/3)
	Error of the Week (3/3)

	Live Programming
	Live Programming

	Turtle Graphics

