
Introduction to Programming
Week 7

Magnus Madsen

Week 7: Recursion

Monday

• Recursion

• Pitfalls

Thursday

• Dynamic programming

• Live programming

1 / 80

Prologue

Quote of the Week

“The programmer, like the poet, works only slightly removed from pure thought-stuff. He

builds his castles in the air, from air, creating by exertion of the imagination.”

— Fred Brooks

3 / 80

Epigram of the Week

“Prolonged contact with the computer turns mathematicians into clerks and vice versa.”

— Alan Perlis

4 / 80

Recursion

Introduction to Recursion (1/5)

Definition: Recursion. See Recursion.

6 / 80

Introduction to Recursion (2/5)

7 / 80

Introduction to Recursion (3/5)

8 / 80

Introduction to Recursion (4/5)

Recursion is everywhere:

• Biology - DNA replication, cell division, family trees)

• Computer Science (file systems, data structures, algorithms)

• Mathematics (Fibonacci sequence, factorials, induction)

• Language (nested sentences, grammar rules)

• Nature (fractals, snowflakes, coastlines, ferns)

Recursion is the foundation for mathematical induction.

• Used to prove properties of inductively defined structures.

9 / 80

Introduction to Recursion (5/5)

Recursion: When a function calls itself.

You might be thinking: What in the blazes? How can this be meaningful?

10 / 80

Why Recursion?

“Recursive programs are often more compact and easier to

understand than their nonrecursive counterparts”
— Introduction to Programming in Java

11 / 80

Why Recursion?

“Recursive programs are often more compact and easier to

understand than their nonrecursive counterparts”
— Introduction to Programming in Java

This is true, but to benefit from a powerful tool, you need to know how to use it.

11 / 80

Why Recursion?

“Recursive programs are often more compact and easier to

understand than their nonrecursive counterparts”
— Introduction to Programming in Java

This is true, but to benefit from a powerful tool, you need to know how to use it.

“I don’t need to learn how to drive because I already know how to walk!”

11 / 80

Example: The Factorial function

The factorial function computes the product of all positive integers from 1 to n.

For example: 5! = 5 × 4 × 3 × 2 × 1 = 120

12 / 80

Example: The Factorial function

The factorial function computes the product of all positive integers from 1 to n.

For example: 5! = 5 × 4 × 3 × 2 × 1 = 120

We can implement factorial using a recursive Java method:

static long factorial(int n) {
 if (n <= 1) return 1; // base case
 return n * factorial(n - 1); // recursive case
}

12 / 80

Tracing factorial

We can trace the execution of factorial(5):

factorial(5)
├─ 5 * factorial(4)
 ├─ 4 * factorial(3)
 ├─ 3 * factorial(2)
 ├─ 2 * factorial(1)
 └─ 1 (base case)
 └─ 2 * 1 = 2
 └─ 3 * 2 = 6
 └─ 4 * 6 = 24
└─ 5 * 24 = 120

The function makes 5 recursive calls before reaching the base case, then unwinds the call

stack, multiplying the results as it returns.

13 / 80

Recursive Algorithm

Every recursive algorithm has two essential parts:

• A base case: A condition that stops the recursion and provides a direct answer.

• A recursive step: A recursive call where the argument is a “smaller” or “simpler” version

of the original problem, ensuring progress toward the base case.

14 / 80

Recursive Algorithm

Every recursive algorithm has two essential parts:

• A base case: A condition that stops the recursion and provides a direct answer.

• A recursive step: A recursive call where the argument is a “smaller” or “simpler” version

of the original problem, ensuring progress toward the base case.

In factorial(int n):

• the base case is: if (n <= 1) return 1

• the recursive step is: return n * factorial(n - 1)

‣ (calls itself with n - 1, a smaller value)

Note: A function can have multiple base cases and/or recursive steps.

14 / 80

Example: Sum of Digits

The sum of digits function computes the sum of all digits in a positive integer.

For example: sumDigits(123) = 1 + 2 + 3 = 6

15 / 80

Example: Sum of Digits

The sum of digits function computes the sum of all digits in a positive integer.

For example: sumDigits(123) = 1 + 2 + 3 = 6

We can implement this recursively by extracting the last digit and recursing on the

remaining digits:

static int sumDigits(int n) {
 if (n == 0) return 0; // base case
 return n % 10 + sumDigits(n / 10); // recursive case
}

Note: The recursive call is always on a smaller value: n / 10 removes the last digit,

guaranteeing the algorithm will eventually reach the base case where n = 0.

15 / 80

Tracing sumDigits

We can trace the execution of sumDigits(123):

sumDigits(123)
├─ 3 + sumDigits(12) // 123 % 10 = 3, 123 / 10 = 12
 ├─ 2 + sumDigits(1) // 12 % 10 = 2, 12 / 10 = 1
 ├─ 1 + sumDigits(0) // 1 % 10 = 1, 1 / 10 = 0
 └─ 0 (base case: n == 0)
 └─ 1 + 0 = 1
 └─ 2 + 1 = 3
└─ 3 + 3 = 6

The function makes 4 recursive calls before reaching the base case, then unwinds the call

stack, summing the digits as it returns: 6.

16 / 80

Example: Array Sum

The array sum function computes the sum of all elements in an array recursively.

For example: arraySum([3, 5, 2], 0) returns 3 + 5 + 2 = 10

17 / 80

Example: Array Sum

The array sum function computes the sum of all elements in an array recursively.

For example: arraySum([3, 5, 2], 0) returns 3 + 5 + 2 = 10

We traverse the array by incrementing the index in each recursive call:

static int arraySum(int[] arr, int index) {
 if (index == arr.length) return 0; // base case
 return arr[index] + arraySum(arr, index + 1); // recursive case
}

Note: The recursive call advances through the array with index + 1, guaranteeing we’ll

eventually reach the base case when index == arr.length.

17 / 80

Tracing arraySum

We can trace the execution of arraySum([3, 5, 2], 0):

arraySum([3, 5, 2], 0)
├─ 3 + arraySum([3, 5, 2], 1)
 ├─ 5 + arraySum([3, 5, 2], 2)
 ├─ 2 + arraySum([3, 5, 2], 3)
 └─ 0 (base case: index == arr.length)
 └─ 2 + 0 = 2
 └─ 5 + 2 = 7
└─ 3 + 7 = 10

The function makes 4 recursive calls to traverse the entire array, then unwinds the call

stack, summing elements as it returns: 10.

18 / 80

Example: Find Maximum

The find maximum function finds the largest element in an array recursively.

For example: findMax([3, 8, 2, 5], 0) returns 8

19 / 80

Example: Find Maximum

The find maximum function finds the largest element in an array recursively.

For example: findMax([3, 8, 2, 5], 0) returns 8

We compare the current element with the maximum of the remaining array:

static int findMax(int[] arr, int index) {
 if (index == arr.length - 1) return arr[index]; // base case
 int maxOfRest = findMax(arr, index + 1); // recursive case
 return Math.max(arr[index], maxOfRest);
}

Note: The base case returns the last element when index == arr.length - 1. Each

recursive call compares the current element with the maximum of all elements after it.

19 / 80

Tracing findMax

We can trace the execution of findMax([3, 8, 2, 5], 0):

findMax([3, 8, 2, 5], 0)
├─ findMax([3, 8, 2, 5], 1)
 ├─ findMax([3, 8, 2, 5], 2)
 ├─ findMax([3, 8, 2, 5], 3)
 └─ 5 (base case: last element)
 └─ max(2, 5) = 5
 └─ max(8, 5) = 8
└─ max(3, 8) = 8

The function makes 4 recursive calls to reach the base case, then unwinds comparing

elements pairwise, ultimately returning the maximum: 8.

20 / 80

Q:
Fill in the blanks:

static int arrayProduct(int[] arr, int index) {
 if (index == 0) return _______________; // base case
 return arr[index - 1] * ______________; // recursive call
}

// Initial call: arrayProduct(arr, arr.length)

Example: Binary Search

The binary search algorithm finds a target value in a sorted array by repeatedly dividing

the search space in half.

For example: searching for 7 in [1, 3, 5, 7, 9, 11] returns index 3

21 / 80

Example: Binary Search

The binary search algorithm finds a target value in a sorted array by repeatedly dividing

the search space in half.

For example: searching for 7 in [1, 3, 5, 7, 9, 11] returns index 3

We compare the target with the middle element and recurse on the appropriate half:

static int binarySearch(int[] arr, int target, int low, int high) {
 if (low > high) return -1; // base case: not found
 int mid = (low + high) / 2;
 if (arr[mid] == target) return mid; // base case: found
 if (target < arr[mid])
 return binarySearch(arr, target, low, mid - 1); // search left half
 else
 return binarySearch(arr, target, mid + 1, high); // search right half
}

Note: Each recursive call eliminates half the search space, making this algorithm very

efficient with O(log n) time complexity.
21 / 80

Tracing binarySearch

We can trace the execution of binarySearch([1, 3, 5, 7, 9, 11], 7, 0, 5):

binarySearch([1, 3, 5, 7, 9, 11], 7, 0, 5)
├─ mid = 2, arr[2] = 5, 7 > 5
└─ binarySearch([1, 3, 5, 7, 9, 11], 7, 3, 5)
 ├─ mid = 4, arr[4] = 9, 7 < 9
 └─ binarySearch([1, 3, 5, 7, 9, 11], 7, 3, 3)
 ├─ mid = 3, arr[3] = 7, 7 == 7
 └─ 3 (base case: found at index 3)

The algorithm makes 3 recursive calls, each time halving the search space, before finding

the target at index 3.

22 / 80

Example: Euclid’s Algorithm

The greatest common divisor of two numbers 𝑎 and 𝑏 is the largest positive integer 𝑟 that

divides both numbers, i.e. 𝑎mod 𝑟 = 0 and 𝑏mod 𝑟 = 0.

For example: gcd(48, 18) = 6 because 6 is the largest number that divides both 48 and 18.

23 / 80

Example: Euclid’s Algorithm

The greatest common divisor of two numbers 𝑎 and 𝑏 is the largest positive integer 𝑟 that

divides both numbers, i.e. 𝑎mod 𝑟 = 0 and 𝑏mod 𝑟 = 0.

For example: gcd(48, 18) = 6 because 6 is the largest number that divides both 48 and 18.

We can use Euclid’s algorithm to compute the greatest common divisor:

static int gcd(int a, int b) { // where a >= b
 if (b == 0) return a; // base case
 return gcd(b, a % b); // recursive case
}

Note: The recursive call is always on a smaller value: a % b is always less than b,

guaranteeing the algorithm will eventually reach the base case where b = 0.

23 / 80

Tracing gcd

We can trace the execution of gcd(48, 18):

gcd(48, 18)
├─ gcd(18, 12) // 48 % 18 = 12
 ├─ gcd(12, 6) // 18 % 12 = 6
 ├─ gcd(6, 0) // 12 % 6 = 0
 └─ 6 (base case: b == 0)
 └─ 6
 └─ 6
└─ 6

The algorithm makes 4 recursive calls before reaching the base case when b = 0, then

returns the greatest common divisor: 6.

24 / 80

Understanding gcd

25 / 80

Pitfalls

Pitfall: Missing Base Case

This function attempts to compute the sum of integers from 1 to n, but lacks a base case.

For example, sum(5) should return 1 + 2 + 3 + 4 + 5 = 15.

int sum(int n) {
 return n + sum(n - 1); // infinite recursion!
}

Without a base case, this function will call itself infinitely, leading to a

StackOverflowError.

The missing base case should be:

if (n <= 0) return 0;

27 / 80

Pitfall: No Convergence

This function attempts to count down from n, but the recursive call doesn’t make progress

toward the base case:

int countdown(int n) {
 if (n == 0) return 0;
 return countdown(n); // calls itself with same value!
}

The function should decrease n by 1 in each recursive call: return countdown(n - 1)

28 / 80

Pitfall: Excessive Memory Requirements (1/2)

This function correctly computes the sum of integers from 1 to n, but will cause a

StackOverflowError for large values of n:

static long sum(int n) {
 if (n <= 0) return 0;
 return n + sum(n - 1);
}

Each recursive call adds a new frame to the call stack. For sum(100000), this creates 100,000

stack frames, exceeding memory limits.

29 / 80

Pitfall: Excessive Memory Requirements (2/2)

public static void main(String[] args) {
 long x = sum(100000);
}

Exception in thread "main" java.lang.StackOverflowError
 at Test.sum(Test.java:6)
 at Test.sum(Test.java:6)
 at Test.sum(Test.java:6)
 at Test.sum(Test.java:6)
 at Test.sum(Test.java:6)
 at Test.sum(Test.java:6)...

30 / 80

Pitfall: Excessive Recomputation

The Fibonacci sequence computes each number as the sum of the two preceding numbers: 0,

1, 1, 2, 3, 5, 8, 13, …

static int fibonacci(int n) {
 if (n <= 1) return n;
 return fibonacci(n - 1) + fibonacci(n - 2);
}

This implementation recomputes the same values repeatedly - for example, fibonacci(5)

calculates fibonacci(3) twice and fibonacci(2) three times, making the algorithm

exponentially slow.

31 / 80

Q:
What can you say about this recursive function?

static int countByThrees(int n) {
 if (n == 0) return 0;
 System.out.println(n);
 return 1 + countByThrees(n - 3);
}

Collatz Conjecture

Collatz Sequence

33 / 80

Collatz Conjecture

34 / 80

Q:

What does this mystery function compute?

static int mystery(int a, int b) { // a, b are non-negative
 if (a == 0) return b; // base case 1
 if (b == 0) return a; // base case 2
 if (a > b)
 return mystery(a - b, b); // recursive call 1
 else
 return mystery(a, b - a); // recursive call 2
}

// mystery(12, 8) returns ?
// mystery(15, 10) returns ?
// mystery(21, 14) returns ?

Drawing a Beautiful Tree

A Beautiful Tree: main

public static void main(String[] args) {
 // Set up the drawing canvas
 StdDraw.setCanvasSize(800, 800);
 StdDraw.clear(new java.awt.Color(135, 206, 235)); // sky blue background

 // Draw ground
 StdDraw.setPenColor(new java.awt.Color(139, 90, 43)); // brown
 StdDraw.filledRectangle(0.5, 0.05, 0.5, 0.05);

 // Draw grass
 StdDraw.setPenColor(new java.awt.Color(0, 100, 0)); // dark green
 StdDraw.filledRectangle(0.5, 0.08, 0.5, 0.02);

 // Draw the tree starting from bottom center
 double startX = 0.5;
 double startY = 0.1;
 double initialLength = 0.25;
 double initialAngle = 90; // pointing upward
 int recursionDepth = 10;
 drawBranch(startX, startY, initialLength, initialAngle, recursionDepth);
}

36 / 80

A Beautiful Tree: drawBranch (1/2)

public static void drawBranch(double x0, double y0, double length, double angle, int depth) {
 if (depth == 0) return; // base case

 // Calculate end point of current branch
 double x1 = x0 + length * Math.cos(Math.toRadians(angle));
 double y1 = y0 + length * Math.sin(Math.toRadians(angle));

 // Set pen thickness based on depth (thicker trunk, thinner branches)
 StdDraw.setPenRadius(0.002 * depth);

 // Set color (brown for trunk, gradually greener for branches)
 if (depth > 5) {
 StdDraw.setPenColor(new java.awt.Color(101, 67, 33)); // brown
 } else if (depth > 2) {
 StdDraw.setPenColor(new java.awt.Color(34, 139, 34)); // forest green
 } else {
 StdDraw.setPenColor(new java.awt.Color(0, 200, 0)); // bright green
 }

 // Draw the branch
 StdDraw.line(x0, y0, x1, y1);

 // ... (continued next slide) ...
}

37 / 80

A Beautiful Tree: drawBranch (2/2)

public static void drawBranch(double x0, double y0, double length, double angle, int depth) {
 // ... previous slide ...

 // Recursive calls for sub-branches
 double branchingAngle = 25; // angle between branches
 double shrinkFactor = 0.7; // how much smaller each branch is

 // Left branch
 drawBranch(x1, y1, length * shrinkFactor, angle + branchingAngle, depth - 1);

 // Right branch
 drawBranch(x1, y1, length * shrinkFactor, angle - branchingAngle, depth - 1);

 // Optional middle branch (for fuller tree)
 if (Math.random() > 0.5) {
 drawBranch(x1, y1, length * shrinkFactor * 0.8, angle + (Math.random() - 0.5) * 10, depth - 1);
 }
}

38 / 80

H-Trees

"Hello, World" of recursive graphics: H-trees

40 / 80

H-trees

41 / 80

Recursive H-tree implementation

42 / 80

Towers of Hanoi

Towers of Hanoi puzzle

44 / 80

Towers of Hanoi

45 / 80

Towers of Hanoi solution (n = 3)

46 / 80

Towers of Hanoi: recursive solution

47 / 80

Recursive call tree for towers of Hanoi

48 / 80

Answers for towers of Hanoi

49 / 80

Q:
(True or False): The

binarySearch method can cause

a StackOverflowException?

Short Programs, Long Time

Short programs, Long time.

We have seen that the Towers of Hanoi takes an exponentially long time to compute.

With recursion, we can easily write programs that appear simple but run for extremely

long periods.

Upshot: We must think carefully about algorithmic complexity.

Later we shall see that dynamic programming can sometimes help speed things up.

50 / 80

Dynamic Programming

Fibonacci numbers

52 / 80

Fibonacci numbers and the golden ratio in the wild

53 / 80

Computing Fibonacci numbers

54 / 80

Recursive call tree for Fibonacci numbers

55 / 80

Exponential waste

56 / 80

Exponential waste dwarfs progress in technology

57 / 80

Introduction to Dynamic Programming

Dynamic Programming is an optimization technique for recursive algorithms.

Key idea: Avoid recomputation by storing results of subproblems.

58 / 80

Two Approaches to Dynamic Programming

Bottom-Up (Tabulation):

• Start with smallest subproblems

• Build up to the original problem

• Use iterative approach with arrays/tables

Top-Down (Memoization):

• Start with original problem

• Cache results as we compute them

• Use recursive approach with memory

We will focus on Top-Down (Memoization) because it uses recursion.

59 / 80

Example: Fibonacci with Memoization

Without memoization: fib(n) takes exponential time:

static int fib(int n) {
 if (n <= 1) return n;
 return fib(n - 1) + fib(n - 2);
}

60 / 80

Example: Fibonacci with Memoization (cont.)

With memoization: fib(n) takes linear time:

// a global variable
static int[] memo = new int[100];

static int fibMemo(int n) {
 if (n <= 1) return n;
 if (memo[n] != 0) return memo[n];
 memo[n] = fibMemo(n-1) + fibMemo(n-2);
 return memo[n];
}

61 / 80

Example: Coin Change Problem

The coin change problem is the following: Given coin denominations and a target

amount, find the minimum number of coins that sum up to that amount.

Example: Make 11¢ using coins [1¢, 5¢, 6¢, 9¢]

• Solution: 2 coins (5¢ + 6¢)

• Without dynamic programming: exponential time - recomputes same amounts.

• With dynamic programming: polynomial time - each amount computed once.

62 / 80

Coin Change without Memoization

Without memoization: minCoins(amount) takes exponential time:

static int minCoins(int[] coins, int amount) {
 if (amount == 0) return 0;
 if (amount < 0) return -1;

 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++) {
 int result = minCoins(coins, amount - coins[i]);
 if (result >= 0) {
 min = Math.min(min, result + 1);
 }
 }
 if (min == Integer.MAX_VALUE) {
 return -1;
 } else {
 return min;
 }
}

63 / 80

Tracing minCoins

Trace of minCoins([1, 5, 6], 7):

minCoins(7)
 ├─ minCoins(6) [using 1¢]
 │ ├─ minCoins(5) → ... → 1
 │ ├─ minCoins(1) → ... → 1
 │ └─ minCoins(0) → 0 ✓ min = 1
 ├─ minCoins(2) [using 5¢]
 │ ├─ minCoins(1) → ... → 1
 │ └─ ... (negative amounts) ✓ min = 2
 └─ minCoins(1) [using 6¢]
 └─ minCoins(0) → 0 ✓ min = 1
Returns: 2

Note: minCoins(1) is computed multiple times!

64 / 80

Coin Change with Memoization

With memoization: minCoins(amount) takes polynomial time:

// a global variable
static int[] memo = new int[100];

static int minCoins(int[] coins, int amount) {
 if (amount == 0) return 0;
 if (amount < 0) return -1;
 if (memo[amount] != 0) return memo[amount];
 int min = Integer.MAX_VALUE;
 for (int i = 0; i < coins.length; i++) {
 int result = minCoins(coins, amount - coins[i]);
 if (result >= 0) {
 min = Math.min(min, result + 1);
 }
 }
 if (min == Integer.MAX_VALUE) {
 memo[amount] = -1;
 } else {
 memo[amount] = min;
 }
 return memo[amount];
}

65 / 80

When to Use Dynamic Programming

Use when a problem has:

1. Overlapping subproblems - same subproblems computed multiple times

2. Optimal substructure - optimal solution contains optimal solutions to subproblems

Examples: Fibonacci, longest common subsequence, shortest paths, …

More advanced techniques covered in data structures and algorithms course.

66 / 80

Q:
(True or False): If a recursive

function has two base cases it

must have two recursive calls?

Live Programming

Live Programming

• FindMax

‣ Inspect the call stack.

‣ See a StackOverflowException

• Fibonacci

• Fibonacci with Memoization

68 / 80

Quick Midway Evaluation

Course Difficulty (1/5)

On the one hand:

• “It is easy to pass”

• “That it’s actually not hard to understand”

• “For experienced students a faster pace would be nice”

• “The exercises are not too difficult, and can be completed based on […] the lectures.”

• “The course is very easy to follow. In some other courses, I find it hard to follow the

lectures and understand the material, but it is very simple and fun here.”

• “Attendance not being required, because I have already studied programming in high

school, and even had my final exam out of C++ stuff. So now, I can just not attend this

class, but still ace the assignments”

70 / 80

Course Difficulty (2/5)

On the other hand:

• “The difficult exercises”

• “intensity of the course”

• “How fast-paced is everything”

• “the complexity increases fast”

• “Sometimes the assignments feel a bit too challenging for someone who started coding 7

weeks ago”

• “It is very intimidating to be in a class where so many people are already experienced in

programming.”

• “the fact that the difficulty of the exercises increase way too fast, not giving time for

begginers to catch up”

• “The into weeks were difficult, I think I spent more time on google than reading the text

book to figure out Java and Intellij”

71 / 80

Course Difficulty (3/5)

72 / 80

Course Difficulty (4/5)

My plan: Keep the current level of difficulty,

maybe slightly decrease it.

73 / 80

Course Difficulty (5/5)

“[…] I think the course is moving way too

slowly for people with experience, but it is

hard to satisfy everyone, as many with no

prior experience find it too fast. I think the

separate courses would be a brilliant idea.”

74 / 80

Split the Course?

75 / 80

Good Things

The best part of the course is:

1. Live programming

2. QA during lectures

3. Quality of exercises and hand-ins

4. Use of real-world tools (Intellij IDEA)

5. Funny jokes and memes

76 / 80

Bad Things

The worst part of the course is:

1. Lectures at 08.15 AM

2. Difficulty is too high

77 / 80

Thoughts on Java

What do you think about using Java for the course?:

78 / 80

Thoughts on Java

What do you think about using Java for the course?:

You mostly said:

“I think it’s ok”

78 / 80

Going Forward

No major changes:

• Keep doing live programming.

• Keep doing QAs during lectures.

• Keep the difficulty the same (or slightly lower).

79 / 80

Sources for images and slides

• https://introcs.cs.princeton.edu/java/lectures/

• https://commons.wikimedia.org/wiki/File:Screenshot_Recursion_via_vlc.png

• https://commons.wikimedia.org/wiki/File:Recursion6.gif

• https://commons.wikimedia.org/wiki/File:Jl_lejaxhe_portrait.jpg

• https://commons.wikimedia.org/wiki/File:%D0%97%D0%B5%D1%80%D0%BA%D0%B0%D0%BB%D0%BE_%D0%A0%D0%B5%D0%

BA%D1%83%D1%80%D1%81%D0%B8%D1%8F_01.jpg

• https://en.wikipedia.org/wiki/File:Mandel_zoom_14_satellite_julia_island.jpg

• https://commons.wikimedia.org/wiki/File:Sierpinski_carpet_6.svg

80 / 80

https://introcs.cs.princeton.edu/java/lectures/
https://commons.wikimedia.org/wiki/File:Screenshot_Recursion_via_vlc.png
https://commons.wikimedia.org/wiki/File:Recursion6.gif
https://commons.wikimedia.org/wiki/File:Jl_lejaxhe_portrait.jpg
https://commons.wikimedia.org/wiki/File:%D0%97%D0%B5%D1%80%D0%BA%D0%B0%D0%BB%D0%BE_%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D1%8F_01.jpg
https://commons.wikimedia.org/wiki/File:%D0%97%D0%B5%D1%80%D0%BA%D0%B0%D0%BB%D0%BE_%D0%A0%D0%B5%D0%BA%D1%83%D1%80%D1%81%D0%B8%D1%8F_01.jpg
https://en.wikipedia.org/wiki/File:Mandel_zoom_14_satellite_julia_island.jpg
https://commons.wikimedia.org/wiki/File:Sierpinski_carpet_6.svg

	Week 7: Recursion
	Monday
	Thursday

	Prologue
	Quote of the Week
	Epigram of the Week

	Recursion
	Introduction to Recursion (1/5)
	Introduction to Recursion (2/5)
	Introduction to Recursion (3/5)
	Introduction to Recursion (4/5)
	Introduction to Recursion (5/5)
	Why Recursion?
	Example: The Factorial function
	Tracing factorial
	Recursive Algorithm
	Example: Sum of Digits
	Tracing sumDigits
	Example: Array Sum
	Tracing arraySum
	Example: Find Maximum
	Tracing findMax
	Fill in the blanks:
	Example: Binary Search
	Tracing binarySearch
	Example: Euclid's Algorithm
	Tracing gcd
	Understanding gcd

	Pitfalls
	Pitfall: Missing Base Case
	Pitfall: No Convergence
	Pitfall: Excessive Memory Requirements (1/2)
	Pitfall: Excessive Memory Requirements (2/2)
	Pitfall: Excessive Recomputation
	What can you say about this recursive function?

	Collatz Conjecture
	What does this mystery function compute?

	Drawing a Beautiful Tree
	A Beautiful Tree: main
	A Beautiful Tree: drawBranch (1/2)
	A Beautiful Tree: drawBranch (2/2)

	H-Trees
	Towers of Hanoi
	(True or False): The binarySearch method can cause a StackOverflowException?
	Short Programs, Long Time

	Dynamic Programming
	Introduction to Dynamic Programming
	Two Approaches to Dynamic Programming
	Example: Fibonacci with Memoization
	Example: Fibonacci with Memoization (cont.)
	Example: Coin Change Problem
	Coin Change without Memoization
	Tracing minCoins
	Coin Change with Memoization
	When to Use Dynamic Programming
	(True or False): If a recursive function has two base cases it must have two recursive calls?

	Live Programming
	Live Programming

	Quick Midway Evaluation
	Course Difficulty (1/5)
	Course Difficulty (2/5)
	Course Difficulty (3/5)
	Course Difficulty (4/5)
	Course Difficulty (5/5)
	Split the Course?
	Good Things
	Bad Things
	Thoughts on Java
	Going Forward
	Sources for images and slides

