
Introduction to Programming
Week 6

Magnus Madsen

Week 6: Functions and Libraries

Monday

• Mathematical functions

• Functions in Java

Thursday

• Pass by value vs. pass by reference

• Overloading

• Live programming

1 / 80

TA classes for ITE

The TA classes for ITE (IT Product Development) have been moved

to 10.15 to 12.00 in Nygaard (5335-184) on Wednesdays 😊

2 / 80

Prologue

Quote of the Week

“Programs must be written for people to read, and only incidentally for machines to execute.”

— Abelson & Sussman

4 / 80

Epigram of the Week

“There will always be things we wish to say in our programs that in all known languages

can only be said poorly.”

— Alan Perlis

5 / 80

Mathematical Functions

Functions are a super power!

7 / 80

What is a function?

✏️
In mathematics, a function is a relation in which each element of the domain is

associated with exactly one element of the codomain.

In programming, we more broadly think of functions as mappings

from input to output.

ℹ️

In programming we have to distinguish between pure

mathematical functions and impure functions that may

have side-effects.

8 / 80

Pure Functions (1/2)

A pure function is one that always returns

the same output when given the same inputs.

9 / 80

Pure Functions (2/2)

A pure function is referentially transparent.

That is, the program on the left should be equivalent to the program on the right:

var x = f(42);

var y = x;

var x = f(42);

var y = f(42);

10 / 80

Example: An impure function

The function System.out.println always returns the same value (i.e. void).

But is it referentially transparent? That is, are these programs the same?

var x = System.out.println("A");

var y = x;

var x = System.out.println("A");

var y = System.out.println("A");

(Note: The above is not technically valid Java – but ignore that for now.)

11 / 80

Examples

We have already seen several pure functions:

• Math.abs – returns the absolute value of a number.

• Math.max – returns the larger of two values.

• Math.min – returns the smaller of two values.

• String.length – returns the number of characters in a string.

• Character.isDigit – returns true if the character is a digit.

12 / 80

Examples

We have already seen several pure functions:

• Math.abs – returns the absolute value of a number.

• Math.max – returns the larger of two values.

• Math.min – returns the smaller of two values.

• String.length – returns the number of characters in a string.

• Character.isDigit – returns true if the character is a digit.

We have also seen several impure functions:

• System.out.println – prints a string to the terminal.

• StdIn.readString – reads input from the user.

• StdOut.print – prints text without a newline.

• StdDraw.line – draws a line on the canvas.

12 / 80

Q:

Are these functions (a) pure or (b) impure?

• StdIn.readDouble

• StdDraw.circle

• Math.sqrt

• StdOut.println

• Math.random

• Integer.parseInt

Functions in Java

What is a Java function?

In Java a function is called a static method. (We will get into the details of “why” later.)

The mathematical function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 is written as:

static int f(int x, int y) {

 return x + y;

}

14 / 80

What is a Java function?

In Java a function is called a static method. (We will get into the details of “why” later.)

The mathematical function 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 is written as:

static int f(int x, int y) {

 return x + y;

}

The mathematical function 𝑓(𝑥) = |𝑥2| is written as:

static int f(int x) {

 return Math.abs(x * x);

}

We can write any computable function in Java.

14 / 80

Functions: Terminology

The Java function:

static int add(int x, int y) {

 return x + y;

}

consists of the following parts:

• Function signature: A broad name for the following components:

‣ Function name: The identifier used to call the function (add in this example).

‣ Formal parameter list: The complete list of parameters (int x, int y).

– Formal parameter: A variable declared in the function definition (x and y).

‣ Return type: The type of value the function returns (int in this example).

• Function body: The code between the braces { return x + y; }.

15 / 80

Functions, Methods, Procedures, Subroutines

Programmers love to argue about names:

• Function: What mathematicians call them.

• Method: What Java programmers call them.

• Procedure: What Pascal programmers called them.

• Subroutine: What FORTRAN programmers called them in the 1950s.

• Subprogram: What Ada programmers call them.

They’re all basically the same thing: reusable pieces of code! 😊

16 / 80

Q:
What is the difference

between an identifier

and a keyword?

Why Java functions?

Q: Why do we need methods? Aren’t variables, loops, and arrays enough?

17 / 80

Why Java functions?

Q: Why do we need methods? Aren’t variables, loops, and arrays enough?

• Software is too big: we have to break it into manageable pieces.

‣ We can use functions to decompose and structure our code.

17 / 80

Why Java functions?

Q: Why do we need methods? Aren’t variables, loops, and arrays enough?

• Software is too big: we have to break it into manageable pieces.

‣ We can use functions to decompose and structure our code.

• Software takes too long to write: functions allow us to reuse code.

‣ We don’t have to scratch from scratch.

‣ We can stand on the shoulders of giants.

17 / 80

Reusability

If we have to use a formula or algorithm frequently, it’s convenient to make a function for it.

Here, we use the distance formula several times: 𝑑 = sqrt{(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2}

public static void main(String[] args) {

 double dist1 = Math.sqrt((3 - 0) * (3 - 0) + (4 - 0) * (4 - 0));

 StdOut.println("(0, 0) to (3, 4): " + dist1);

 double dist2 = Math.sqrt((7 - 1) * (7 - 1) + (10 - 2) * (10 - 2));

 StdOut.println("(1, 2) to (7, 10): " + dist2);

 double dist3 = Math.sqrt((8 - 5) * (8 - 5) + (9 - 5) * (9 - 5));

 StdOut.println("(5, 5) to (8, 9): " + dist3);

}

18 / 80

Reusability

We can avoid repeating the formula by writing a function:

static double distance(double x1, double y1, double x2, double y2) {

 return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));

}

public static void main(String[] args) {

 StdOut.println("(0, 0) to (3, 4): " + distance(0, 0, 3, 4));

 StdOut.println("(1, 2) to (7, 10): " + distance(1, 2, 7, 10));

 StdOut.println("(5, 5) to (8, 9): " + distance(5, 5, 8, 9));

}

19 / 80

A well-structured program: Many small functions

A well-structured book is divided into chapters which are

divided into paragraphs which are divided into sentences.

20 / 80

A well-structured program: Many small functions

A well-structured book is divided into chapters which are

divided into paragraphs which are divided into sentences.

A well-structured program is divided into modules which

are divided into functions which are divided into

statements (the function bodies).

20 / 80

Separation of Concerns

Functions enable separation of concerns:

✏️
Separation of concerns is the “process of separating a computer program into

distinct features that overlap functionally as little as possible.” via Wiktionary

The key is that each function can focus on doing one thing well.

• Then we can combine functions to make the full program.

21 / 80

Separation of Concerns

Functions enable separation of concerns:

✏️
Separation of concerns is the “process of separating a computer program into

distinct features that overlap functionally as little as possible.” via Wiktionary

The key is that each function can focus on doing one thing well.

• Then we can combine functions to make the full program.

For example, if we write a student grade calculator, we might have:

• one function to read student scores from a file,

• one function to calculate the average grade, and

• one function to display the results in a formatted report

21 / 80

Example 1: A mathematical function

We can write a function to calculate the compound interest for a given principal amount,

annual interest rate, and number of years:

static double compoundInterest(double principal, double rate, int years) {

 return principal * Math.pow(1 + rate, years);

}

22 / 80

Example 1: A mathematical function

We can write a function to calculate the compound interest for a given principal amount,

annual interest rate, and number of years:

static double compoundInterest(double principal, double rate, int years) {

 return principal * Math.pow(1 + rate, years);

}

Upshot: We don’t have to remember the complicated formula.

22 / 80

Example 1: A mathematical function

We can write a function to calculate the compound interest for a given principal amount,

annual interest rate, and number of years:

static double compoundInterest(double principal, double rate, int years) {

 return principal * Math.pow(1 + rate, years);

}

Upshot: We don’t have to remember the complicated formula.

Upshot: If the formula is wrong, we only have to change it in one place.

22 / 80

Example 1: A mathematical function

We can write a function to calculate the compound interest for a given principal amount,

annual interest rate, and number of years:

static double compoundInterest(double principal, double rate, int years) {

 return principal * Math.pow(1 + rate, years);

}

Upshot: We don’t have to remember the complicated formula.

Upshot: If the formula is wrong, we only have to change it in one place.

Upshot: If someone discovers a better formula they can change the function and have the change

reflected everywhere.

22 / 80

Example 2: Draw a triangle

We can write a function to draw a triangle with the bottom-left corner at (x, y):

static void drawTriangle(double x, double y, double size) {

 double[] xCoords = new double[]{x, x + size, x + size / 2};

 double[] yCoords = new double[]{y, y, y + size * Math.sqrt(3) / 2};

 StdDraw.polygon(xCoords, yCoords);

}

23 / 80

Example 2: Draw a triangle

We can write a function to draw a triangle with the bottom-left corner at (x, y):

static void drawTriangle(double x, double y, double size) {

 double[] xCoords = new double[]{x, x + size, x + size / 2};

 double[] yCoords = new double[]{y, y, y + size * Math.sqrt(3) / 2};

 StdDraw.polygon(xCoords, yCoords);

}

Upshot: We can work at a higher level of abstraction.

23 / 80

Example 3: Draw a rectangle

We can write a function to draw a rectangle with the bottom-left corner at (x, y) using

more intuitive parameters than the standard StdDraw.rectangle method:

static void drawRectangle(double x, double y, double width, double height) {

 StdDraw.rectangle(x + width / 2, y + height / 2, width / 2, height / 2);

}

Upshot: We can design more ergonomic APIs.

24 / 80

Example: A Picture Says a Thousand Words

A class that uses several methods to draw a beautiful image:

public class Picture {

 static void drawHouse(double x, double y) {

 // ...

 }

 static void drawTree(double x, double y) {

 // ...

 }

 static void drawSun(double x, double y) {

 // ...

 }

 public static void main(String[] args) {

 // ...

 }

}

25 / 80

Example: A Picture Says a Thousand Words

The complete implementation using various StdDraw methods:

public class Picture {

 static void drawHouse(double x, double y) {

 StdDraw.setPenColor(216, 131, 148); // Dusty rose

 StdDraw.filledRectangle(x, y, 0.15, 0.1);

 StdDraw.setPenColor(119, 158, 203); // Muted blue

 StdDraw.filledPolygon(new double[]{x - 0.2, x, x + 0.2},

 new double[]{y + 0.1, y + 0.25, y + 0.1});

 }

 static void drawTree(double x, double y) {

 StdDraw.setPenColor(160, 130, 95); // Muted brown

 StdDraw.filledRectangle(x, y, 0.02, 0.05);

 StdDraw.setPenColor(119, 168, 119); // Sage green

 StdDraw.filledCircle(x, y + 0.08, 0.06);

 }

 ...

26 / 80

Example: A Picture Says a Thousand Words

 static void drawSun(double x, double y) {

 StdDraw.setPenColor(240, 220, 130); // Soft gold

 StdDraw.filledCircle(x, y, 0.08);

 StdDraw.setPenColor(220, 190, 120); // Warm sand

 StdDraw.setPenRadius(0.005);

 for (int i = 0; i < 8; i++) {

 double angle = i * Math.PI / 4;

 StdDraw.line(x, y, x + 0.12 * Math.cos(angle), y + 0.12 * Math.sin(angle));

 }

 }

 public static void main(String[] args) {

 drawHouse(0.5, 0.3);

 drawTree(0.2, 0.2);

 drawTree(0.8, 0.25);

 drawTree(0.35, 0.18);

 drawSun(0.85, 0.8);

 drawSun(0.15, 0.75);

 }

}

27 / 80

Q:
• Is drawSun pure?

• Is drawSun idempotent?

Functional programming

Functions are such a powerful concept that entire

programming languages are built around them.

But not in this course 😔

Haskell Racket

OCaml Flix

28 / 80

Calls and Returns

Reminder: Control Flow

✏️
Control flow is “the order in which individual statements, instructions, or

function calls of an imperative program are executed or evaluated.” via Wiktionary

We have already seen if and while statements as a form of control flow.

30 / 80

Reminder: Control Flow

✏️
Control flow is “the order in which individual statements, instructions, or

function calls of an imperative program are executed or evaluated.” via Wiktionary

We have already seen if and while statements as a form of control flow.

Functions are a new and powerful form of control flow.

ℹ️
Functions allow you to package code into reusable units that can be called from

anywhere in your program.

30 / 80

Calling a function

Given the two methods compoundInterest and main:

static double compoundInterest(double principal, double rate, int years) {

 return principal * Math.pow(1 + rate, years);

}

public static void main(String[] args) {

 double p = Double.parseDouble(args[0]);

 double amount = compoundInterest(p, 0.05, 10);

 System.out.println("$" + p + " becomes $" + amount);

}

At the method call-site compoundInterest(p, 0.05, 10), the arguments are passed into

the formal parameters and control is transfered to the method.

When the method finishes computation, i.e. returns, the return value is passed back to the

call-site and the computation resumes from there.

31 / 80

Return statement

The return statement is how a function sends a value back to its caller.

• Every non-void function must have at least one return statement.

• The type of the returned value must match the function’s declared return type.

• When a return statement is executed, the function immediately exits.

32 / 80

Example: Multiple Return Statements

A function can have multiple return statements with complex control flow:

static String grade(int score) {

 if (score >= 90) {

 return "Excellent";

 } else if (score >= 80) {

 return "Good";

 } else if (score >= 70) {

 return "Satisfactory";

 } else if (score >= 60) {

 return "Pass";

 } else {

 return "Fail";

 }

 // We never get here.

}

33 / 80

Example: Returns from within loops

We can use return statements inside loops for early exit:

static boolean contains(int element, int[] array) {

 for (int i = 0; i < array.length; i++) {

 if (array[i] == element) {

 return true; // Found it! Exit immediately

 }

 }

 return false; // Not found after checking all elements.

}

34 / 80

Q:
Can a function call an

impure function and

be pure itself?

Void Functions

Void functions

Java requires that every method has a a return type.

• But not every method needs to return a value.

• Functions that don’t return any value have the return type void.

36 / 80

Example: Void function

Here is a function that prints text three times:

static void printThreeTimes(String text) {

 for (int i = 0; i < 3; i++) {

 StdOut.println(text);

 }

}

Note: A void method does not need a return statement. All other methods do.

37 / 80

Example: Early return in void function

A void function can use return to exit early without returning a value:

static void printGreeting(String name) {

 if (name.isEmpty()) {

 System.out.println("Hello, stranger!");

 return; // Exit early

 }

 System.out.println("Hello, " + name + "!");

 System.out.println("Welcome to the program!");

}

38 / 80

Q:
Does it make sense to

have a pure function with

return type void?

Argument passing

Primitive and reference types

In Java, we distinguish between primitive types and reference types.

✏️
A primitive type is a “data type provided by a programming language as a basic

building block, such as integer, character or Boolean.” via Wiktionary

✏️
A reference type is a “data type that represents a reference to a value, as opposed

to the value itself.” via Wiktionary

In general:

• Every type starting with a lowercase letter is a primitive type. (int, boolean, double, …)

• Every type starting with an uppercase letter is a reference type. (String, …)

• Arrays are always reference types.

Reference types are often mutable, meaning their contents can be changed.

40 / 80

Reminder: mutating values vs. reassigning variables

❗️ Mutating a value is different from reassigning to a variable.

Here, we reassign to the variable a1.

We change it to point to a new array.

Variable a2 points to the old array.

Output: [4, 5, 6], [1, 2, 3]

int[] a1 = new int[]{1, 2, 3};

int[] a2 = a1;

a1 = new int[]{ 4, 5, 6 };

System.out.println(Arrays.toString(a1));

System.out.println(Arrays.toString(a2));

Here, we mutate the value in a1. We

change the contents of the array.

Variable a2 points to the same array.

Output: [4, 2, 3], [4, 2, 3]

int[] a1 = new int[]{1, 2, 3};

int[] a2 = a1;

a1[0] = 4;

System.out.println(Arrays.toString(a1));

System.out.println(Arrays.toString(a2));

41 / 80

Q:
What is an example of

a reference type that is

immutable?

Argument passing

ℹ️
When we pass reference type arguments to a function, we create new variables

that point to the same values.

❗️
Hence, if we mutate a function argument those changes are visible outside the

function as well.

42 / 80

Example: Mutating a reference type

static void modifyArray(int[] arr) {

 arr[0] = 999;

 StdOut.println("Inside function: " + arr[0]);

}

public static void main(String[] args) {

 int[] numbers = new int[]{1, 2, 3};

 StdOut.println("Before: " + numbers[0]);

 modifyArray(numbers);

 StdOut.println("After: " + numbers[0]);

}

Output: Before: 1, Inside function: 999, After: 999

The original array is modified because arr and args point to the same array.

43 / 80

Example: Reassigning to a reference type

static void modifyArray(int[] arr) {

 arr = new int[]{4, 5, 6};

 StdOut.println("Inside function: " + arr[0]);

}

public static void main(String[] args) {

 int[] numbers = new int[]{1, 2, 3};

 StdOut.println("Before: " + numbers[0]);

 modifyArray(numbers);

 StdOut.println("After: " + numbers[0]);

}

Output: Before: 1, Inside function: 4, After: 1

The original array is not modified because we reassigned to the variable arr.

44 / 80

Defensive copy

To avoid unintended modifications, we can create a defensive copy:

static void safeModifyArray(int[] arr) {

 int[] copy = arr.clone(); // Create a copy

 copy[0] = 999;

 StdOut.println("Modified copy: " + copy[0]);

}

public static void main(String[] args) {

 int[] numbers = new int[]{1, 2, 3};

 StdOut.println("Before: " + numbers[0]);

 safeModifyArray(numbers);

 StdOut.println("After: " + numbers[0]);

}

Output: Before: 1, Modified copy: 999, After: 1

45 / 80

Life lesson

If you mutate in a function, you mutate in real life.

46 / 80

Q:
What is wrong with this Java program?

static int sum(int x, int y, int z) {

 int result = x + y + z;

}

Q:
Can a method with

return type void contain

a return statement?

The Call Stack

What is the call stack?

The call stack is a data structure that tracks which methods are currently executing and

stores information about function calls, including parameters and local variables.

When a function is called:

1. A new stack frame is created and pushed onto the call stack

2. The frame contains the function’s parameters and local variables

3. When the methods returns, its frame is popped from the stack

48 / 80

Example: Understanding the call stack

This stack has 3 frames for its 3 calls.

Each frame tracks where it must return.

public static void main(String[] args) {

 int value = square(5);

 StdOut.println("5 squared is: " + value);

}

static int square(int x) {

 return multiply(x, x);

}

static int multiply(int a, int b) {

 return a * b;

}

main

return @

args []

value ?

square

return @

x 5

result ?

return to

multiply

return @

a 5

b 5

result 25

return to

49 / 80

Example: Call stack step-by-step

main

return @

args []

value ??

1. A main frame is allocated

• args contains the empty array

• value is allocated but not yet known

50 / 80

Example: Call stack step-by-step

main

return @

args []

value ??

square

return @

x 5

result ??

return to

1. A main frame is allocated

• args contains the empty array

• value is allocated but not yet known

2. A square frame is allocated

• the return address points to main

• x contains the argument 5

• the result is allocated but not yet known

50 / 80

Example: Call stack step-by-step

main

return @

args []

value ??

square

return @

x 5

result ??

return to

multiply

return @

a 5

b 5

result 25

return to

1. A main frame is allocated

• args contains the empty array

• value is allocated but not yet known

2. A square frame is allocated

• the return address points to main

• x contains the argument 5

• the result is allocated but not yet known

3. A multiply frame is allocated

• the return address points to square

• a contains the argument 5

• b contains the argument 5

• the result is calculated as 25

50 / 80

Example: Call stack step-by-step

main

return @

args []

value ??

square

return @

x 5

result 25

return to

1. A main frame is allocated

• args contains the empty array

• value is allocated but not yet known

2. A square frame is allocated

• the return address points to main

• x contains the argument 5

• the result is allocated but not yet known

3. A multiply frame is allocated

• the return address points to square

• a contains the argument 5

• b contains the argument 5

• the result is calculated as 25

4. The multiply frame is deallocated

• the result is updated with 25

50 / 80

Example: Call stack step-by-step

main

return @

args []

value 25

1. A main frame is allocated

• args contains the empty array

• value is allocated but not yet known

2. A square frame is allocated

• the return address points to main

• x contains the argument 5

• the result is allocated but not yet known

3. A multiply frame is allocated

• the return address points to square

• a contains the argument 5

• b contains the argument 5

• the result is calculated as 25

4. The multiply frame is deallocated

• the result is updated with 25

5. The square frame is deallocated

• value is updated with 25

50 / 80

Overloading

What is overloading?

✏️ In Java, overloading allows us to use the same name for different functions.

• We can overload based on the number of formal parameters (arity).

• We can overload based on the type of the formal parameters.

• We cannot overload based on the return type.

52 / 80

Example 1: Argument arity overloading

We can overload based on the number of formal parameters:

static int max(int a, int b) {

 if (a > b) {

 return a;

 } else {

 return b;

 }

}

static int max(int a, int b, int c) {

 return max(max(a, b), c);

}

53 / 80

Example 2: Argument type overloading

We can overload based on the type of the formal parameters:

static void printValue(int x) {

 StdOut.println("Integer: " + x);

}

static void printValue(double x) {

 StdOut.println("Double: " + x);

}

54 / 80

Example 3: No overloading for return types

We cannot overload based on the return type 😔

static int getValue() {

 return 42;

}

static double getValue() {

 return 3.14;

}

java: method getValue() is already defined in class...

55 / 80

Ambiguity

We cannot overload methods such that method resolution becomes ambiguous.

static int f(String s) {

 System.out.println("Hello!");

}

static int f(String s) {

 System.out.println("Goodbye!");

}

What would be the meaning of f("Magnus")? Hence, Java disallows this.

56 / 80

Q:
True or false?

• A method does not need to have a return type.

• A method does not need to have a formal parameter.

• A method does not need to have a return statement.

Q:

Here is a Java method:

static int multiply(int a, int b) {

 return a * b;

}

Identify the:

• Method signature

• Method name

• Formal parameter list

• Return type

Libraries

What is a library?

✏️
A library is “a collection of software routines that provide functionality to be

incorporated into or used by a computer program.” via Wiktionary

At this point, a library is a group of functions in their own file.

Putting code with different functionality in different libraries helps us organize code.

The key idea is that someone can write a library, and someone else can use it.

58 / 80

Making our own library

We can make our own library to organize and reuse code. Suppose we want an array library.

1. We create a new class ArrayUtils.java and put our array functions in it.

2. We refer to all of these functions as ArrayUtils.xyz in any other file.

public class ArrayUtils {

 public static int count(String[] a, String x) { ... }

}

public class CountForks {

 public static void main(String[] args) {

 int n = ArrayUtils.count(args, "fork");

 System.out.print("Forks found: " + n);

 }

}

59 / 80

Libraries can build on libraries

The StdStats library depends on StdDraw to create visualizations.

public class StdStats {

 public static void plotPoints(double[] a) {

 int n = a.length;

 StdDraw.setXscale(-1, n);

 StdDraw.setPenRadius(0.01);

 for (int i = 0; i < n; i++) {

 StdDraw.point(i, a[i]);

 }

 }

}

60 / 80

Libraries can build on libraries

❗️ Ideally reuse simplifies code, but too much reuse can lead to complexity.

Haskell dependency tree

61 / 80

Where do we find libraries

The Java standard library comes bundled with over 5000 classes.

The typical way to find libraries is via a package manager,

such as Maven, npm, or NuGet, which host millions of libraries.

ℹ️
Maven is the main library repository for Java.

(We will not explore it in this course.)

62 / 80

Java standard library vs. textbook library

❗️ The (1) Java Standard Library and the (2)

Textbook library are not the same thing.

(1) is built into the Java language, available

wherever Java is used.

(2) is specific to the book. You must include it

separately if you want to use it.

63 / 80

Terminology

• A library is a collection of programs designed to be used by other programs.

• A client is a program that uses a library.

• An API (application programming interface) is a collection of protocols for using a library

or other programming resource. These are requirements and promises about what the

library does and the kind of data that are expected and returned.

• An implementation is the code behind the API. It is the actual code behind fulfills the

promises of the API.

64 / 80

Terminology

If a restaurant is a library,

the customer is the client,

the menu is the API, and

the kitchen is the implementation.

65 / 80

The StdRandom Library

Example: StdRandom library

67 / 80

Example: Shuffle

We can use StdRandom.shuffle to shuffle a deck of cards.

public static void main(String[] args) {

 String[] deck = {"A♠", "K♠", "Q♠", "J♠", "A♥", "K♥", "Q♥", "J♥",

 "A♣", "K♣", "Q♣", "J♣", "A♦", "K♦", "Q♦", "J♦"};

 StdRandom.shuffle(deck);

 for (int i = 0; i < deck.length; i++) {

 StdOut.print(deck[i] + " ");

 }

}

68 / 80

The StdStats Library

Example: StdStats library

70 / 80

Example: Plot Points

We can use StdStats.plotPoints to make a simple graph of the daily temperature.

public static void main(String[] args) {

 // Daily temperature in Copenhagen (°C) for a week

 double[] temperatures = new double[]{

 15.2, 18.7, 22.1, 19.4, 16.8, 20.3, 17.9

 };

 StdDraw.setYscale(0, 25);

 StdStats.plotPoints(temperatures);

}

71 / 80

Example: Plot Bars

We can use StdStats.plotBars to make a simple bar chart of student scores.

public static void main(String[] args) {

 // Student exam scores (out of 100)

 double[] scores = new double[]{

 85, 92, 78, 95, 88, 73, 91

 };

 StdDraw.setYscale(0, 100);

 StdStats.plotBars(scores);

}

72 / 80

Advantages of libraries

Reusability Write once, use many times across different programs.

Time saving No need to reinvent the wheel for common functionality.

Quality Well-tested libraries have fewer bugs than custom implementations.

Expertise Libraries are often written by experts in specific domains.

Maintainability Updates and bug fixes benefit all programs using the library.

73 / 80

Disadvantages of libraries

Dependencies Your program depends on external code you don’t control.

Complexity Adding libraries can make your project more complex to manage.

Security risks Libraries may contain vulnerabilities or malicious code.

74 / 80

Q:
What is the difference

between an API and an

implementation?

Compiler error of the week (1/3)

What is wrong with this code?

static int getAge() {

 StdOut.println("What is your age?");

 int age = StdIn.readInt();

 StdOut.println("Your age is " + age);

}

75 / 80

Compiler error of the week (1/3)

What is wrong with this code?

static int getAge() {

 StdOut.println("What is your age?");

 int age = StdIn.readInt();

 StdOut.println("Your age is " + age);

}

java: missing return statement

75 / 80

Compiler error of the week (2/3)

static double multiply(double a, double b) {

 return a * b;

}

static double multiply(double a, double b, double c) {

 return a * b * c;

}

static int computeAreaOrVolume(boolean b, int[] arr) {

 if (b) {

 return multiply(arr[0], arr[1]);

 } else {

 return multiply(arr[0], arr[1], arr[2]);

 }

}

java: incompatible types: possible lossy conversion from double to int

76 / 80

Compiler error of the week (3/3)

What is wrong with this code?

static char getCharOrString() {

 return StdIn.readChar();

}

static String getCharOrString() {

 return StdIn.readString();

}

77 / 80

Compiler error of the week (3/3)

What is wrong with this code?

static char getCharOrString() {

 return StdIn.readChar();

}

static String getCharOrString() {

 return StdIn.readString();

}

java: method getCharOrString() is already defined in class...

77 / 80

Live Programming

Live Programming

• The Call Stack (explain using DrawPicture)

‣ Understanding calls and returns.

‣ Including early return.

‣ Inspecting the stack in the debugger. (Using step-into and step-over).

• Overloading (e.g. max)

• Understanding pass-by-value and pass-by reference.

79 / 80

Sources for images and slides

• https://introcs.cs.princeton.edu/java/lectures/

• https://commons.wikimedia.org/wiki/File:Injection_keine_Injektion_2a.svg

• https://xkcd.com/180/

• https://commons.wikimedia.org/wiki/File:Bookshelf_(cropped).jpg

• https://commons.wikimedia.org/wiki/File:A_graph_containing_all_installed_Haskell_packages.svg

• https://commons.wikimedia.org/wiki/File:Apache_Maven_logo.svg

• https://commons.wikimedia.org/wiki/File:Npm-logo.svg

• https://commons.wikimedia.org/wiki/File:NuGet_project_logo.svg

80 / 80

https://introcs.cs.princeton.edu/java/lectures/
https://commons.wikimedia.org/wiki/File:Injection_keine_Injektion_2a.svg
https://xkcd.com/180/
https://commons.wikimedia.org/wiki/File:Bookshelf_(cropped).jpg
https://commons.wikimedia.org/wiki/File:A_graph_containing_all_installed_Haskell_packages.svg
https://commons.wikimedia.org/wiki/File:Apache_Maven_logo.svg
https://commons.wikimedia.org/wiki/File:Npm-logo.svg
https://commons.wikimedia.org/wiki/File:NuGet_project_logo.svg

	Week 6: Functions and Libraries
	Monday
	Thursday

	TA classes for ITE
	Prologue
	Quote of the Week
	Epigram of the Week

	Mathematical Functions
	Functions are a super power!
	What is a function?
	Pure Functions (1/2)
	Pure Functions (2/2)
	Example: An impure function
	Examples
	 Are these functions (a) pure or (b) impure?StdIn.readDouble StdDraw.circle Math.sqrt StdOut.println Math.random Integer.parseInt

	Functions in Java
	What is a Java function?
	Functions: Terminology
	Functions, Methods, Procedures, Subroutines
	What is the difference between an identifier and a keyword?
	Why Java functions?
	Reusability
	A well-structured program: Many small functions
	Separation of Concerns
	Example 1: A mathematical function
	Example 2: Draw a triangle
	Example 3: Draw a rectangle
	Example: A Picture Says a Thousand Words
	Example: A Picture Says a Thousand Words
	 Is drawSun pure? Is drawSun idempotent?
	Functional programming

	Calls and Returns
	Reminder: Control Flow
	Calling a function
	Return statement
	Example: Multiple Return Statements
	Example: Returns from within loops
	Can a function call an impure function and be pure itself?

	Void Functions
	Void functions
	Example: Void function
	Example: Early return in void function
	 Does it make sense to have a pure function with return type void?

	Argument passing
	Primitive and reference types
	Reminder: mutating values vs. reassigning variables
	 What is an example of a reference type that is immutable?
	Argument passing
	Example: Mutating a reference type
	Example: Reassigning to a reference type
	Defensive copy
	Life lesson
	 What is wrong with this Java program?
	 Can a method with return type void contain a return statement?

	The Call Stack
	What is the call stack?
	Example: Understanding the call stack
	Example: Call stack step-by-step

	Overloading
	What is overloading?
	Example 1: Argument arity overloading
	Example 2: Argument type overloading
	Example 3: No overloading for return types
	Ambiguity
	 True or false?A method does not need to have a return type. A method does not need to have a formal parameter. A method does not need to have a return statement.
	 Here is a Java method:

	Libraries
	What is a library?
	Making our own library
	Libraries can build on libraries
	Where do we find libraries
	Java standard library vs. textbook library
	Terminology

	The StdRandom Library
	Example: Shuffle

	The StdStats Library
	Example: Plot Points
	Example: Plot Bars
	Advantages of libraries
	Disadvantages of libraries
	 What is the difference between an API and an implementation?
	Epilogue
	Compiler error of the week (1/3)
	Compiler error of the week (2/3)
	Compiler error of the week (3/3)

	Live Programming
	Live Programming
	Sources for images and slides

