
Introduction to Programming
Week 3

Magnus Madsen

Week 3: Conditionals and Loops

Monday

• Conditionals

• Loops

Thursday

• For-Loops

• Live programming

1 / 61

Prologue

Quote of the Week

“Typing is no substitute for thinking.”

— Richard W. Hamming

3 / 61

Epigram of the Week

“Software and cathedrals are much the same – first we build them, then we pray.”

— Sam Redwine

4 / 61

Conditionals

Conditionals and Loops

6 / 61

The if statement

7 / 61

Example of if statement use: Simulate a coin flip

8 / 61

Example: Guessing Game (revisited)

We can reimplement the Guessing Game from last week:

public class GuessRevised {

 public static void main(String[] args) {

 int answer = (int) (Math.random() * 10);

 int guess = Integer.parseInt(args[0]);

 System.out.println("The correct answer was: " + answer);

 if (answer == guess) {

 System.out.println("You won!");

 } else {

 System.out.println("You lost!");

 }

 }

}

9 / 61

Example: Drinking age

We can use if-then-else statements to implement an age checker:

public class AgeControl {

 public static void main(String[] args) {

 int age = Integer.parseInt(args[0]);

 if (age < 16) {

 System.out.println("You may buy soda.");

 } else if (age < 18) {

 System.out.println("You may buy beer.");

 } else {

 System.out.println("You may buy liquor.");

 }

 }

}

🍼 🍺 🍷

Age limits

Beer 16 years

Liquor 18 years

10 / 61

Example: Tax brackets

We can use if-else-statements to compute taxes at different rates:

public class TaxCalculator {

 public static void main(String[] args) {

 int income = Integer.parseInt(args[0]);

 if (income < 100) {

 System.out.println("Tax: " + income * 0.10);

 } else if (income < 400) {

 System.out.println("Tax: " + income * 0.20);

 } else {

 System.out.println("Tax: " + income * 0.50);

 }

 }

}

💰️ 💰️ 💰️

Tax brackets

0–99 10%

100–399 20%

400+ 50%

Note: This is not how tax brackets are actually calculated.

11 / 61

Example: Greeting Dracula

We can use if-then-else statements to guard against 🧛:

public class FrontDoor {

 public static void main(String[] args) {

 String guest = args[0];

 if (!guest.equals("Dracula")) {

 System.out.println("Please come in " + guest + "!");

 } else {

 System.out.println("You are not welcome here.");

 }

 }

}

Note: The negation can be avoided by swapping the branches.

12 / 61

Example: Greeting Dracula

13 / 61

Example: Division by zero check

We can use an if-then-else statement to check for division by zero.

if (den == 0) {

 System.out.println("Division by zero");

} else {

 System.out.println("Quotient = " + num / den);

}

If the denominator is zero, print an error. Otherwise print the quotient.

14 / 61

Example: Negative root check

We can use an if-then-else statement to check for square-root of a negative value.

double discriminant = b * b - 4.0 * c;

if (discriminant < 0.0) {

 System.out.println("No real roots");

} else {

 System.out.println((-b + Math.sqrt(discriminant)) / 2.0);

 System.out.println((-b - Math.sqrt(discriminant)) / 2.0);

}

If the discriminant is negative, print an error. Otherwise print the solutions.

15 / 61

Example: Infinite slope

We often use if-statements to handle special cases.

Here we rule out vertical slopes, which would result in division by zero in the formula.

public class Slope {

 public static void main(String[] args) {

 double x1 = Double.parseDouble(args[0]);

 double y1 = Double.parseDouble(args[1]);

 double x2 = Double.parseDouble(args[2]);

 double y2 = Double.parseDouble(args[3]);

 if (x1 == x2) {

 System.out.println("vertical");

 } else {

 double slope = (y2 - y1) / (x2 - x1);

 System.out.println(slope);

 }

 }

}

16 / 61

If and if-else

We can either use if alone, or we can pair it with an else.

If If-Else

if (a == 0) {

 System.out.println("zero");

}

if (a == 0) {

 System.out.println("zero");

} else {

 System.out.println("nonzero");

}

17 / 61

Program equivalence

An interesting phenomenon is that two programs can have different source code, yet have

the same meaning – i.e. have the same runtime behavior.

We say that the two programs are equivalent.

Compare:

Checks whether a is zero. Checks whether a is non-zero.

if (a == 0) {

 System.out.println("zero");

} else {

 System.out.println("nonzero");

}

if (a != 0) {

 System.out.println("nonzero");

} else {

 System.out.println("zero");

}

18 / 61

Quiz

Are these two programs equivalent?

public class ComputeMax1 {

 public static void main(String[] args) {

 int x = Integer.parseInt(args[0]);

 int y = Integer.parseInt(args[1]);

 if (x > y) {

 int z = x;

 System.out.println("max is " + z);

 } else {

 int z = y;

 System.out.println("max is " + z);

 }

 }

}

public class ComputeMax2 {

 public static void main(String[] args) {

 int x = Integer.parseInt(args[1]);

 int y = Integer.parseInt(args[0]);

 int max = 42;

 if (x >= y) {

 max = x;

 } else {

 max = y;

 }

 System.out.println("max is " + max);

 }

}

19 / 61

Nested ifs

By nesting ifs, we can create a decision tree.

if (movesAround) {

 if (chanceToRecharge) {

 System.out.println("probably not");

 } else {

 if (hotWhenRunning) {

 System.out.println("haha good luck");

 } else {

 System.out.println("maybe");

 }

 }

} else {

 if (emptySpace) {

 System.out.println("probably not");

 } else {

 System.out.println("sure");

 }

}

20 / 61

Unnesting ifs

Sometimes nested-ifs are redundant and can be expressed more simply with &&.

if (pinaColadas && caughtInRain) {

 if (!yoga) {

 if (brain >= 0.5) {

 if (loveAtMidnight) {

 System.out.println("Write to me and escape.");

 }

 }

 }

}

is the same as

if (pinaColadas && caughtInRain && !yoga && brain >= 0.5 && loveAtMidnight) {

 System.out.println("Write to me and escape.");

}

21 / 61

Q:

What does this program print?

boolean a = true;

boolean b = false;

boolean c = true;

if (a) {

 if (b) {

 System.out.println("X");

 } else {

 if (c) {

 System.out.println("Y");

 }

 }

 System.out.println("Z");

}

Q:
What happens when

you evaluate 1.0 / 0 ?

Loops

The while loop

23 / 61

Don’t repeat yourself (DRY)

This program does the same thing many times, printing “𝑁 th Hello”.

public class TenHellosLong {

 public static void main(String[] args) {

 System.out.println("1st Hello");

 System.out.println("2nd Hello");

 System.out.println("3rd Hello");

 System.out.println("4th Hello");

 System.out.println("5th Hello");

 System.out.println("6th Hello");

 System.out.println("7th Hello");

 System.out.println("8th Hello");

 System.out.println("9th Hello");

 System.out.println("10th Hello");

 }

}

$ java TenHellosLong

1st Hello

2nd Hello

3rd Hello

4th Hello

5th Hello

6th Hello

7th Hello

8th Hello

9th Hello

10th Hello

24 / 61

Ten hellos

We can avoid a lot of repetition by using a loop instead.

public class TenHellos {

 public static void main(String[] args) {

 System.out.println("1st Hello");

 System.out.println("2nd Hello");

 System.out.println("3rd Hello");

 int i = 4;

 while (i <= 10) {

 System.out.println(i + "th Hello");

 i = i + 1;

 }

 }

}

$ java TenHellos

1st Hello

2nd Hello

3rd Hello

4th Hello

5th Hello

6th Hello

7th Hello

8th Hello

9th Hello

10th Hello

25 / 61

Example: A While and If

What pattern does this program print?

int size = 5;

int row = 0;

while (row < size) {

 int col = 0;

 while (col < size) {

 if ((row + col) % 2 == 0) {

 System.out.print("* ");

 } else {

 System.out.print(" ");

 }

 col++;

 }

 System.out.println();

 row++;

}

26 / 61

Example: Answer

And the answer is:

int size = 5;

int row = 0;

while (row < size) {

 int col = 0;

 while (col < size) {

 if ((row + col) % 2 == 0) {

 System.out.print("* ");

 } else {

 System.out.print(" ");

 }

 col++;

 }

 System.out.println();

 row++;

}

* * *

 * *

* * *

 * *

* * *

27 / 61

Control flow

✏️
Control flow is “the order in which individual statements, instructions, or function calls of

an imperative program are executed or evaluated.” via Wiktionary

28 / 61

Recall: Expressions and statements

Remember these two fundamental concepts:

• An expression evaluates to a value.

• A statement executes an action.

Expression Statement

x + 5 int x = 5;

Math.random() System.out.println("Hello");

29 / 61

If, if-else, while

We can describe the grammar of if-then-else and while statements as:

If if (<expression>) { <statements> }

If-else if (<expression>) { <statements> } else { <statements> }

While while (<expression>) { <statements> }

How they work:

• If: Execute statements once if condition is true.

• If-else: Execute one branch based on condition (true → first, false → second).

• While: Execute statements repeatedly while condition stays true.

30 / 61

While loop: Terminating

This while loop counts from 0 to 4, then terminates:

public class CountToFive {

 public static void main(String[] args) {

 int i = 0;

 while (i < 5) {

 System.out.println("Count: " + i);

 i++;

 }

 System.out.println("Done!");

 }

}

$ java CountToFive

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

Done!

31 / 61

While loop: Non-terminating

This while loop runs forever because i never changes:

public class CountForever {

 public static void main(String[] args) {

 int i = 0;

 while (i < 5) {

 System.out.println("Count: " + i);

 // Missing: i++;

 }

 System.out.println("Done!");

 }

}

$ java CountForever

Count: 0

Count: 0

Count: 0

Count: 0

Count: 0

...

(continues forever)

32 / 61

While loop: Immediate termination

This while loop never executes because the condition is initially false:

public class NeverRuns {

 public static void main(String[] args) {

 int i = 10;

 while (i < 5) {

 System.out.println("Count: " + i);

 i++;

 }

 System.out.println("Done!");

 }

}

$ java NeverRuns

Done!

33 / 61

While true

We commonly use while(true) to specify an infinite loop.

public class Forever {

 public static void main(String[] args) {

 int n = 0;

 while (true) {

 System.out.println(n);

 n++;

 }

 System.out.println("Done!");

 }

}

$ java Forever

0

1

2

...

1594367

1594368

...

34 / 61

Q:
Why would we ever want

to deliberately write an

infinite loop?

An ode to an infinite loop

What does this print?

while (true) {

 System.out.println("This is the program that never ends.");

 System.out.println("Yes, it goes on and on, my friends.");

 System.out.println("A student started running it, not knowing what it was,");

 System.out.println("and it's still running to this very day because:");

}

35 / 61

Escaping infinite loops

We can stop an infinite-looping program from the outside.

In the terminal,

Pressing Ctrl-c can exit most programs.

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,

and it's still running to this very day because:

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,

and it's still running to this very day because:

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,

and it's still running to this very day because:

^C

In IntelliJ,

The stop button (⏹️) ends a program.

The pause button (⏸️) triggers the debugger!

36 / 61

Program trace

✏️
A program trace is a record of the values of variables and paths taken in a program when it

runs.

public class Trace {

 public static void main(String[] args) {

 int count = 0;

 double total = 0;

 System.out.println("start loop"); // trace

 while (total < 10) {

 total += Math.random();

 count += 1;

 System.out.println("total: " + total); // trace

 System.out.println("count: " + count); // trace

 }

 System.out.println("end loop"); // trace

 System.out.println(count);

 }

}

This program counts how many random

numbers (0.0 - 1.0) are needed to add to 10.

We create a trace of the program by

adding println calls.

37 / 61

Q:
Adding print statements to a program to

understand its execution is called print-

debugging.

Is there a better way?

For-loops

What is a for-loop?

A for-loop is a control-flow construct that repeats a block of statements a specific number of times.

• Unlike while-loops, for-loops are designed for counting-based iteration.

• They combine initialization, condition checking, and increment in one line.

• Useful when you know how many times to repeat something.

A quality of life feature.

39 / 61

The for loop

40 / 61

Why use a for-loop?

For-loops can make code more clean and readable, especially when counting:

While Loop For Loop

int i = 0;

while (i < 10) {

 System.out.println(i);

 i++;

}

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Benefits of for-loops:

• Shorter code - all loop control in one line

• Fewer bugs - harder to forget the increment

• Clear intent - obviously counting-based

• Local scope - loop variable i is contained

within the loop

Downsides of for-loops:

• Less flexible - awkward for complex patterns

• Less natural for non-counting tasks

41 / 61

Q:

What does this program print?

public class Main {

 public static void main(String[] args) {

 for (int i = 1; i <= 3; i++) {

 for (int j = 1; j <= 4; j++) {

 System.out.print(i * j + " ");

 }

 System.out.println();

 }

 }

}

The many faces of for (1/2)

42 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

43 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Counting backwards:

for (int i = 10; i > 0; i--) {

 System.out.println(i);

}

43 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Counting backwards:

for (int i = 10; i > 0; i--) {

 System.out.println(i);

}

Skip counting:

for (int i = 0; i < 20; i += 2) {

 System.out.println(i);

}

43 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Counting backwards:

for (int i = 10; i > 0; i--) {

 System.out.println(i);

}

Skip counting:

for (int i = 0; i < 20; i += 2) {

 System.out.println(i);

}

Multiple variables:

for (int i = 0, j = 10; i < j; i++, j--) {

 System.out.println(i + " " + j);

}

43 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Counting backwards:

for (int i = 10; i > 0; i--) {

 System.out.println(i);

}

Skip counting:

for (int i = 0; i < 20; i += 2) {

 System.out.println(i);

}

Multiple variables:

for (int i = 0, j = 10; i < j; i++, j--) {

 System.out.println(i + " " + j);

}

Using existing variables:

int x = 5;

for (; x > 0; x--) {

 System.out.println(x);

}

43 / 61

The many faces of for (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting:

for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

Counting backwards:

for (int i = 10; i > 0; i--) {

 System.out.println(i);

}

Skip counting:

for (int i = 0; i < 20; i += 2) {

 System.out.println(i);

}

Multiple variables:

for (int i = 0, j = 10; i < j; i++, j--) {

 System.out.println(i + " " + j);

}

Using existing variables:

int x = 5;

for (; x > 0; x--) {

 System.out.println(x);

}

Empty parts (infinite loop):

for (;;) {

 System.out.println("Hi!");

}

43 / 61

When not to use for-loop

Here is a while-loop where it would be inelegant to use a for-loop:

Using while-loop (elegant):

int flips = 0;

while (Math.random() < 0.5) {

 System.out.println("Heads!");

 flips++;

}

System.out.println("Tails!");

System.out.println("Took " + flips + " flips");

Using for-loop (awkward):

int flips;

for (flips = 0; Math.random() < 0.5; flips++) {

 System.out.println("Heads!");

}

System.out.println("Tails!");

System.out.println("Took " + flips + " flips");

The while-loop is more natural because we need to access flips after the loop ends.

44 / 61

Increment, decrement, and re-assignment

Java has several operators for modifying variables:

Operator Example Equivalent to

++ i++ i = i + 1

-- i-- i = i - 1

+= i += 2 i = i + 2

-= i -= 3 i = i - 3

*= i *= 4 i = i * 4

/= i /= 5 i = i / 5

Whether these operators make code easier to read is debatable.

45 / 61

Q:

What does this program print?

public class Main {

 public static void main(String[] args) {

 int x = 5;

 int i = 0;

 for (; i < 3; i++) {

 x += i;

 System.out.print(x + " ");

 }

 x *= 2;

 System.out.println(x);

 }

}

Gambler's ruin problem

46 / 61

Example of nesting conditionals and loops: Simulate gambler's ruin

47 / 61

Digression: Simulation and analysis

48 / 61

Q:

What does this program print?

int height = 6;

for (int i = 1; i <= height; i++) {

 for (int j = 1; j <= height - i; j++) {

 System.out.print(" ");

 }

 for (int j = 1; j <= (2 * i - 1); j++) {

 System.out.print("*");

 }

 System.out.println();

}

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= height - 2; j++) {

 System.out.print(" ");

 }

 System.out.println("|||");

}

And the answer is:

int height = 6;

for (int i = 1; i <= height; i++) {

 for (int j = 1; j <= height - i; j++) {

 System.out.print(" ");

 }

 for (int j = 1; j <= (2 * i - 1); j++) {

 System.out.print("*");

 }

 System.out.println();

}

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= height - 2; j++) {

 System.out.print(" ");

 }

 System.out.println("|||");

}

 *

 |||

 |||

49 / 61

For vs. While

For vs. while (1/2)

These two programs both perform a countdown to rocket liftoff:

While Loop:

public class CountdownWhile {

 public static void main(String[] args) {

 int count = 10;

 while (count > 0) {

 System.out.print(count + "...");

 count--;

 }

 System.out.println("Liftoff! 🚀");

 }

}

For Loop:

public class CountdownFor {

 public static void main(String[] args) {

 for (int count = 10; count > 0; count--) {

 System.out.print(count + "...");

 }

 System.out.println("Liftoff! 🚀");

 }

}

Both programs output:

10... 9... 8... (...) 2... 1... Liftoff! 🚀

51 / 61

For vs. while (2/2)

For-loops and while-loops are equivalent.

Every for-loop can be rewritten as a while-loop and vice-versa.

Program For-loop While-loop

Print 0 - 9
for (int i = 0; i < 10; i++) {

 System.out.println(i);

}

int i = 0;

while (i < 10) {

 System.out.println(i);

 i++;

}

Count flips until tails
int c = 0;

for (double n = 0.0; n < 0.5; n = Math.random()) {

 c++;

}

System.out.println(c);

double n = 0.0;

int c = 0;

while (n < 0.5) {

 n = Math.random();

 c++;

}

System.out.println(c);

52 / 61

Q:

Rewrite the program below to use for-loops:

public class Main {

 public static void main(String[] args) {

 int i = 1;

 int j = 1;

 while (i <= 3) {

 j = 1;

 while (j <= i) {

 System.out.print("*");

 j++;

 if (j > i) {

 i++;

 }

 }

 System.out.println();

 }

 }

}

Scope

What is scoping?

The scope of a variable is the region where it can be accessed.

• Variables are created when they are declared.

• Variables are destroyed when their block ends.

• A block is delimited by curly braces: { }.

• Variables declared inside a block are not accessible outside of the block.

54 / 61

Example: Scope (1/2)

We can use variables in scope, but not variables out of scope:

int x = 1;

if (true) {

 int y = 3;

}

System.out.println(x);

int x = 1;

if (true) {

 int y = 3;

 System.out.println(y);

}

int x = 1;

if (true) {

 int y = 3;

}

System.out.println(y);

OK: x is in scope OK: y is in scope ERROR: y is out of scope

55 / 61

Example: Scope (2/2)

Variables have different scopes in different blocks:

public class Main {

 public static void main(String[] args) {

 int a = 1; // Scope: entire main method

 if (a > 0) {

 int b = 2; // Scope: if block only

 System.out.println(b);

 }

 // System.out.println(b); // ERROR: b is out of scope

 for (int i = 0, j = 10; i < j; i++, j--) { // i and j scope: for block only

 int sum = i + j; // sum scope: for block only

 System.out.println(sum); // OK: sum in scope

 }

 // System.out.println(i); // ERROR: i is out of scope

 // System.out.println(j); // ERROR: j is out of scope

 System.out.println(a); // OK: a is still in scope

 }

}

56 / 61

Prologue

Compiler error of the week

What is the problem here?

int sum = 0;

int i = 0;

while (i < 10){

 int tmp = 0;

 if (i % 2 == 0){

 for (int j = 0; j < 10; j += 2){

 tmp -= j;}} else {

 for (int j = 0; j < 10; j += 2){

 tmp += j; }}

 sum += tmp * j; i++; }

58 / 61

Compiler error of the week

What is the problem here?

int sum = 0;

int i = 0;

while (i < 10){

 int tmp = 0;

 if (i % 2 == 0){

 for (int j = 0; j < 10; j += 2){

 tmp -= j;}} else {

 for (int j = 0; j < 10; j += 2){

 tmp += j; }}

 sum += tmp * j; i++; }

java: cannot find symbol

 symbol: variable j

58 / 61

Live Programming

Live Programming

• An equivalent while and for-loop.

• Using a loop as an if-statement.

• Flattening nested-ifs.

• Flattening nested-loops.

• Debugging infinite loops.

• Simulate Gambler’s Ruin

60 / 61

Sources for slides and images

• https://introcs.cs.princeton.edu/java/lectures/

• https://xkcd.com/1924/

• https://commons.wikimedia.org/wiki/File:Moai_Rano_raraku.jpg

61 / 61

https://introcs.cs.princeton.edu/java/lectures/
https://xkcd.com/1924/
https://commons.wikimedia.org/wiki/File:Moai_Rano_raraku.jpg

	Week 3: Conditionals and Loops
	Monday
	Thursday

	Prologue
	Quote of the Week
	Epigram of the Week

	Conditionals
	Example: Guessing Game (revisited)
	Example: Drinking age
	Example: Tax brackets
	Example: Greeting Dracula
	Example: Greeting Dracula
	Example: Division by zero check
	Example: Negative root check
	Example: Infinite slope
	If and if-else
	Program equivalence
	Quiz
	Nested ifs
	Unnesting ifs
	What does this program print?
	What happens when you evaluate 1.0 / 0 ?

	Loops
	Don't repeat yourself (DRY)
	Ten hellos
	Example: A While and If
	Example: Answer
	Control flow
	Recall: Expressions and statements
	If, if-else, while
	While loop: Terminating
	While loop: Non-terminating
	While loop: Immediate termination
	While true
	Why would we ever want to deliberately write an infinite loop?
	An ode to an infinite loop
	Escaping infinite loops
	Program trace
	 Adding print statements to a program to understand its execution is called print-debugging.Is there a better way?

	For-loops
	What is a for-loop?
	Why use a for-loop?
	What does this program print?
	The many faces of for (1/2)
	The many faces of for (2/2)
	When not to use for-loop
	Increment, decrement, and re-assignment
	What does this program print?
	What does this program print?
	And the answer is:

	For vs. While
	For vs. while (1/2)
	For vs. while (2/2)
	Rewrite the program below to use for-loops:

	Scope
	What is scoping?
	Example: Scope (1/2)
	Example: Scope (2/2)

	Prologue
	Compiler error of the week

	Live Programming
	Live Programming
	Sources for slides and images

