Introduction to Programming
Week 3

Magnus Madsen

Week 3: Conditionals and Loops

Monday

« Conditionals
« Loops

Thursday
« For-Loops
 Live programming

1/61

Prologue

Quote of the Week

“Typing is no substitute for thinking.”
— Richard W. Hamming

3/61

Epigram of the Week

“Software and cathedrals are much the same — first we build them, then we pray””

— Sam Redwine

4/ 61

Conditionals

Conditionals and Loops

Control flow

« The sequence of statements that are actually executed in a program.
« Conditionals and loops enable us to choreograph control flow.

true boolean 1

statement 1

l [false
statement 2 statement 1 ,l,

v boolean 2 true —»| Statement 2
statement 3

false

L J l

statement 4

statement 3

straight-line control flow control flow with conditionals and a loop
[previous lecture] [this lecture]

The if statement

Execute certain statements depending on the values of certain variables.
« Evaluate a boolean expression.

* If true, execute a statement.
* The else option: If false, execute a different statement.

Example:

— true

if (x < 0) x

-X;

false —

Example:

— true

max

Replaces x with the absolute value of x

l

if (x > y) max = X;

else

max = y;

l’ase1

max = y;

l

Computes the maximum of x and y

Example of if statement use: simulate a coin flip

public class Flip
{
public static void main(String[] args)
{
if (Math.random() < 0.5)
System.out.println("Heads");
else
System.out.printin("Tails");
}
}

% java
Heads

% java
Heads

% java
Tails

% java
Heads

Flip

Flip

Flip

Flip

Example: Guessing Game (revisited)

We can reimplement the Guessing Game from last week:

public class GuessRevised {
public static void main(String[] args) {
int answer = (int) (Math.random() * 10);
int guess = Integer.parselnt(args[0]);

System.out.println("The correct answer was: " + answer);
1f (answer == guess) {

System.out.println("You won!");
} else {

System.out.println("You lost!");
}

9/61

Example: Drinking age

We can use if-then-else statements to implement an age checker:

public class AgeControl { % | v
public static void main(String[] args) {
int age = Integer.parselnt(args[0]);

if (age < 16) {

System.out.println("You may buy soda."); Age limits
} else if (age < 18) { Beer | 16 years
System.out.println("You may buy beer."); Liquor | 18 years
} else {

System.out.println("You may buy liquor.");
}

10/ 61

Example: Tax brackets

We can use if-else-statements to compute taxes at different rates:

public class TaxCalculator { &E &E &E
public static void main(String[] args) {
int income = Integer.parselnt(args[0]);
if (income < 100) {

System.out.println("Tax: " + income * 0.10); Tax brackets
} else 1if (income < 400) { 0-99 10%
.] .] 0 >3 .
System.out.println("Tax: + 1lncome 0.20); 100-399 | 20
} else {
System.out.println(“Tax: " + income * 0.50); 400+ 50%

Note: This is not how tax brackets are actually calculated.

11/ 61

Example: Greeting Dracula

We can use if-then-else statements to guard against {3:

public class FrontDoor {
public static void main(String[] args) {
String guest = args[0];
if ('guest.equals("Dracula")) {

System.out.println("Please come in " + guest + "!");
} else {

System.out.println("You are not welcome here.");

}

Note: The negation can be avoided by swapping the branches.

12/ 61

Example: Greeting Dracula

Example: Division by zero check

We can use an if-then-else statement to check for division by zero.

if (den == 0) {
System.out.println("Division by zero");
} else {
System.out.println("Quotient = " + num / den);

If the denominator is zero, print an error. Otherwise print the quotient.

14/ 61

Example: Negative root check

We can use an if-then-else statement to check for square-root of a negative value.

double discriminant = b * b - 4.0 * c;

1f (discriminant < 0.0) {
System.out.println("No real roots");

} else {
System.out.println((-b + Math.sqrt(discriminant)) / 2.0);
System.out.println((-b - Math.sqgrt(discriminant)) / 2.0);

If the discriminant is negative, print an error. Otherwise print the solutions.

15/ 61

Example: Infinite slope

We often use if-statements to handle special cases.

Here we rule out vertical slopes, which would result in division by zero in the formula.

public class Slope {
public static void main(String[] args) {
double x1 = Double.parseDouble(args[0]);
double yl = Double.parseDouble(args[1]);
double x2 Double.parseDouble(args[2]);
double y2 = Double.parseDouble(args([3]);

1T (x1 == x2) {
System.out.println("vertical");

} else {
double slope = (y2 - yl) / (x2 - x1);
System.out.println(slope);

If and if-else

We can either use if alone, or we can pair it with an else.

If If-Else
it (a == 0) { if (a == 0) {
System.out.println("zero"); System.out.println("zero");
} } else {

System.out.println("nonzero");

}

if else
(e

17/ 61

Program equivalence

An interesting phenomenon is that two programs can have different source code, yet have
the same meaning — i.e. have the same runtime behavior.

We say that the two programs are equivalent.

Compare:
Checks whether a is zero. Checks whether a is non-zero.
if (a == 0) { if (a !'=0) {
System.out.println("zero"); System.out.println("nonzero");
} else { } else {
System.out.println("nonzero"); System.out.println("zero");
} }

18/ 61

Are these two programs equivalent?

public class ComputeMaxl { public class ComputeMax2 {
public static void main(String[] args) { public static void main(String[] args) {
int x = Integer.parselnt(args[0]); int x = Integer.parselnt(args[1]);
int y = Integer.parselnt(args[1]); int y = Integer.parselnt(args[0]);
if (x >vy) { int max = 42;
int z = x; if (x >=y) {
System.out.println("max is " + z); max = X;
} else { } else {
int z = y; max = y;
System.out.println("max is " + z); }
} System.out.println("max is " + max);
} }
} }

19/ 61

By nesting ifs, we can create a decision tree.

1T (movesAround) {

}

it (chanceToRecharge) {

System.out.println("probably not");
} else {

if (hotWhenRunning) {

System.out.println("haha good luck");

} else {

System.out.println("maybe");
}

} else {
it (emptySpace) {

System.out.println("probably not");

} else {

}

System.out.println("sure");

SHOULD I PUT SOLAR PANELS ON IT?

DOES IT MOVE AROUND?

DOES IT HAVE. REGULAR
CHANCES To RECHARGE
OR. SLIAP BATTERIES?

1S THERE EMPTY SPACE
NEPRBY' WHERE [T WOULD
BE EASIER To PUT THEM?

WHEN RUNNING, 15
IT HOT TO THE TOUCH?

20/ 61

Unnesting ifs

Sometimes nested-ifs are redundant and can be expressed more simply with &&.

if (pinaColadas && caughtInRain) {
if ('yoga) {
if (brain >= 0.5) {
if (loveAtMidnight) {
System.out.println("Write to me and escape.");

}

is the same as

1t (pinaColadas && caughtInRain && !'yoga && brain >= 0.5 && loveAtMidnight) {
System.out.println("Write to me and escape.");

}

21/ 61

What does this program print?

boolean a true;
boolean b false;
boolean ¢ true;
it (a) {
it (b) {
System.out.println("X");

} else {
if (c) {
System.out.println("Y");
}

}
System.out.println("Z");

~ What happens when
Q' you evaluate T30 /70 ?

Loops

The while loop

Execute certain statements repeatedly until certain conditions are met.

« Evaluate a boolean expression.

* If true, execute a sequence of statements.

* Repeat.
Example:
int i = 0;
int v = 1;
while (i <= n)
{
System.out.println(v);
i =1+ 1;
V = 2 * Vv,

Prints the powers of two from 20 to 27 .
[stay tuned for a trace]

I e 1l

false —

true

{

System.out.printin(v);

Don’t repeat yourself (DRY)

This program does the same thing many times, printing “/Nth Hello”.

public class TenHellosLong { $ java TenHellosLong
public static void main(String[] args) {

System.out.println("1lst Hello");

System.out.println("2nd Hello"); Ist Hello
System.out.println("3rd Hello"); 2nd Hello
System.out.println("4th Hello"); 3rd Hello
System.out.println("5th Hello"); 4th Hello
System.out.println("6th Hello"); 5th Hello
System.out.println("7th Hello"); 6th Hello
System.out.println("8th Hello"); 7th Hello
System.out.println("9th Hello") 8th Hello

System.out.println("10th Hello"); 9th Hello
} 10th Hello

24/ 61

Ten hellos

We can avoid a lot of repetition by using a loop instead.

public class TenHellos { $ java TenHellos

public static void main(String[] args) {
System.out.println("1lst Hello");

| 1st Hello
System.out.println("2nd Hello"); 2nd Hello
System.out.println("3rd Hello"); 3rd Hello
1nF i =.4; 4th Hello
while (i <= 10) { 5th Hello
System.out.println(i + "th Hello"); 6th Hello
i=1+1; 7th Hello
} 8th Hello
} 9th Hello

} 10th Hello

25/ 61

Example: A While and If

What pattern does this program print?

int size = 5;
int row = 0;
while (row < size) {
int col = 0;
while (col < size) {

if ((row + col) % 2 == 0) {
System.out.print("* ");
} else {
System.out.print(" ");
}
col++;
}
System.out.println();
row++;

26/ 61

Example: Answer

And the answer is:

int size = 5; * & *

int row = 0; * *

while (row < size) { * * *
int col = 0; * *

while (col < size) {
if ((row + col) % 2 == 0) {
System.out.print("* ");
} else {
System.out.print(" ");
}
col++;
}
System.out.println();
row++;

27 / 61

R Control flow is “the order in which individual statements, instructions, or function calls of
an imperative program are executed or evaluated.” via Wiktionary

28 /61

Recall: Expressions and statements

Remember these two fundamental concepts:
« An expression evaluates to a value.
- A statement executes an action.

Expression Statement

X + 5 int x = 5;

Math.random() System.out.println("Hello");

29 /61

If, it-else, while

We can describe the grammar of if-then-else and while statements as:

If if (<expression>) { <statements>}

If-else | if (<expression>){ <statements>} else { <statements>}

While | while (<expression>) { <statements> }

How they work:

« If: Execute statements once if condition is true.

« If-else: Execute one branch based on condition (true — first, false — second).
« While: Execute statements repeatedly while condition stays true.

30/ 61

While loop: Terminating

This while loop counts from 0 to 4, then terminates:

public class CountToFive { $ java CountToFive
public static void main(String[] args) {
int i = 0;
while (i < 5) { Count: ©
System.out.println("Count: " + i); Count: 1
i++; Count: 2
} Count: 3
System.out.println("Done!"); Count: 4
} Done!
}

31/ 61

While loop: Non-terminating

This while loop runs forever because i never changes:

public class CountForever { $ java CountForever
public static void main(String[] args) {
int i = 0;
while (i < 5) { Count: 0O
System.out.println("Count: " + 1i); Count: O
// Missing: i++; Count: O
} Count: ©
System.out.println("Done!"); Count: O
} e
} (continues forever)

32/ 61

While loop: Immediate termination

This while loop never executes because the condition is initially false:

public class NeverRuns { $ java NeverRuns
public static void main(String[] args) {
int 1 = 10;
while (i < 5) { Done!
System.out.println("Count: " + 1i);
i++;
}

System.out.println("Done!");

33/ 61

We commonly use while(true) to specify an infinite loop.

public class Forever { $ java Forever
public static void main(String[] args) {
int n = 0;
while (true) { 0
System.out.println(n); 1
n++; 2
System.out.println("Done!"); 1594367
} 1594368
}

34/ 61

Why would we ever want
Q: to deliberately write an
infinite loop?

An ode to an infinite loop

What does this print?

while (true) {
System.out.println("This is the program that never ends.");
System.out.println("Yes, it goes on and on, my friends.");
System.out.println("A student started running it, not knowing what it was,");
System.out.println("and it's still running to this very day because:");

35/ 61

Escaping infinite loops

We can stop an infinite-looping program from the outside.

In the terminal, In Intelli],
Pressing Ctrl-c can exit most programs. The stop button ({_J]) ends a program.

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,
and it's still running to this very day because:

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,
and it's still running to this very day because:

This is the program that never ends.

Yes it goes on and on, my friends.

A student started running it, not knowing what it was,
and it's still running to this very day because:

~C

MyProgram

The pause button ([L)) triggers the debugger!

36 /61

Program trace

‘runs.

public class Trace {
public static void main(String[] args) {
int count = 0;
double total = 0;
System.out.println("start loop"); // trace
while (total < 10) {
total += Math.random();
count += 1;
System.out.println("total: " + total); // trace
System.out.println("count: " + count); // trace
}
System.out.println("end loop"); // trace
System.out.println(count);

A program trace is a record of the values of variables and paths taken in a program when it

This program counts how many random
numbers (0.0 - 1.0) are needed to add to 10.

We create a trace of the program by
adding println calls.

37 /61

Adding print statements to a program to

understand its execution is called print-
Q e debugging.

[s there a better way?

For-loops

What is a foF-loop?

A for-loop is a control-flow construct that repeats a block of statements a specific number of times.

« Unlike while-loops, for-loops are designed for counting-based iteration.
« They combine initialization, condition checking, and increment in one line.
 Useful when you know how many times to repeat something.

A quality of life feature.

39 /61

The for loop

An alternative repetition structure. <«—— Why? Can provide code that is more compact and understandable.

« Evaluate an initialization statement.
» Evaluate a booTlean expression.

« If true, execute a sequence of statements,
then execute an increment statement.

* Repeat.
Example: initialization statement
intv=1; /
for(@nti =ODG ¢=n96+9)
{ boolean expression

System.out.printin(i + + V),

vV = 2%V,

Every for loop has an equivalent while loop:
int v = 1;
int i = 0;)

while ((1 <= nj))
s _A

System.out.println(i +

increment statement

}

Prints the powers of two from 20 to 27

Why use a foF-loop?

For-loops can make code more clean and readable, especially when counting:

While Loop For Loop
int i = 0; for (int i =0; 1 < 10; i++) {
while (i < 10) { System.out.println(i);
System.out.println(i); }
i++;
}
Benefits of for-loops: Downsides of for-loops:
« Shorter code - all loop control in one line . - awkward for complex patterns
« Fewer bugs - harder to forget the increment . for non-counting tasks

« Clear intent - obviously counting-based
« Local scope - loop variable i is contained
within the loop

41/ 61

What does this program print?

public class Main {
public static void main(String[] args) {
for (int 1 =1; 1 <= 3; i++) {
for (int j =1; j <= 4; j++) {
System.out.print(i * j + " ");

}
System.out.println();

The many faces of foi (1/2)

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting;

for (int i = 0; i < 10; i++) {
System.out.println(i);
}

43/ 61

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting;

for (int i = 0; i < 10; i++) {
System.out.println(i);
}

Counting backwards:
for (int 1 =10; i > 0; i--) {

System.out.println(i);
}

43/ 61

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting;

for (int i = 0; i < 10; i++) {
System.out.println(i);
}

Counting backwards:
for (int 1 =10; i > 0; i--) {

System.out.println(i);
}

Skip counting;:
for (int 1 = 0; 1 < 20; 1 += 2) {

System.out.println(i);
}

43/ 61

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting; Multiple variables:
for (int 1 = 0; 1 < 10; i++) { for (int i =0, j =10; 1 < j; i++, j--) {
System.out.println(i); System.out.println(i + " " + j);
} }

Counting backwards:
for (int 1 =10; i > 0; i--) {

System.out.println(i);
}

Skip counting;:
for (int 1 = 0; 1 < 20; 1 += 2) {

System.out.println(i);
}

43/ 61

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting; Multiple variables:
for (int 1 = 0; 1 < 10; i++) { for (int i =0, j =10; 1 < j; i++, j--) {
System.out.println(i); System.out.println(i + " " + j);
} }
Counting backwards: Using existing variables:
for (int 1 =10; i > 0; i--) { int x = 5;
System.out.println(i); for (; x > 0; x--) {
} System.out.println(x);
}

Skip counting;:
for (int 1 = 0; 1 < 20; 1 += 2) {

System.out.println(i);
}

43/ 61

The many faces of foF (2/2)

For-loops can take many different forms by varying their three parts:

Standard counting;

for (int i = 0; i < 10; i++) {
System.out.println(i);
}

Counting backwards:

for (int i = 10; i > 0; i--) {
System.out.println(i);
}

Skip counting;:

for (int 1 = 0; 1 < 20; i += 2)
System.out.println(i);
}

Multiple variables:

for (int 1 =0, j =10; i < j; i++, j--) {
System.out.println(i + " " + j);

}
Using existing variables:

int x = 5;

for (; x > 0; x--) {
System.out.println(x);

}

Empty parts (infinite loop):

for (;;) {
System.out.println("Hi!");

}

43/ 61

When not to use foF-loop

Here is a while-loop where it would be inelegant to use a for-loop:

Using while-loop (elegant): Using for-loop (awkward):
int flips = 0; int flips;
while (Math.random() < 0.5) { for (flips = 0; Math.random() < 0.5; flips++) {
System.out.println("Heads!"); System.out.println("Heads!");
flips++; }
} System.out.println("Tails!");
System.out.println("Tails!"); System.out.println("Took " + flips + " flips");

System.out.println("Took " + flips + " flips");

The while-loop is more natural because we need to access flips after the loop ends.

44/ 61

Increment, decrement, and re-assignment

Java has several operators for modifying variables:

Operator | Example | Equivalent to
o i++ 1i=1+1
- i-- i=1-1
+= i+=2 i=1+2
-= i-=3 i=1-3
= i= 4 i=1%*4
/= i/=5 i=1/5

Whether these operators make code easier to read is debatable.

45/ 61

What does this program print?

public class Main {
public static void main(String[] args) {
int x = 5;
int 1 = 0;
for (; i < 3; i++) {
X += 1;

System.out.print(x + " ");

}
X *= 2
System.out.println(x);

Gambler's ruin problem

MAHALLE =
T

ﬂl’ TM

goal

i —LI_LI_I—‘_LI_I_I_I_I_TI_I_I_U—LI_L‘
0

loss

=i |

j i , «d NBE AP
el ITFTTLIT T o

win

A gambler starts with $stake and places $1 fair bets. it
* OQutcome 1 (loss): Gambler goes broke with $0. stake
« Qutcome 2 (win): Gambler reaches $goal.)

One approach: Monte Carlo simulation.
Q. What are the chances of winning? « Use a simulated coin flip.
Q. How many bets until win or loss? « Repeat and compute statistics.

4¢

Example of nesting conditionals and loops: Simulate gamber's ruin

Gambler's ruin simulation

« Get command-line arguments.

* Run all the experiments.

* Run one experiment.

« Make one bet.

+ If goal met, count the win.

* Print #wins and # trials.

public class Gambler

{

public static void main(String[] args)

{

}
}

int stake = Integer.parselInt(args[0]);
int goal = Integer.parselInt(args[1]);
int trials = Integer.parselnt(args([2]);
int wins = 0;
for (int t = 0; t < trials; t++)
{
int cash = stake;)
while (cash > 0 & & cash < goal))
{
if (Math.random() < 0.5) cash++;
else cash--;|
¥
1T (t == goal) wins++;
}

System.out.printin(wins +

wins of = + trials);

% java Gambler 5
191 wins of 1000

<«—— for loop

I
while loop
within a for loop

I
if statement
within a while loop
within a for loop

25 1000

Digression: simulation and analysis

Early scientists were
fascinated by the study
of games of chance.

Facts (known via mathematical analysis for centuries)
 Probability of winning = stake + goal.
« Expected number of bets = stake X desired gain.

Christiaan Huygens
1629-1695

stake goal trials

[S/

Example
» 20% chance of turning $500 into $2500. 500/2500 = 20% ?Q?La:?nga:?igoo > 25 1000
» Expect to make 1 million $1 bets. 500*(2500 - 500) = 1,000,000

% java Gambler 5 25 1000
203 wins of 1000

% java Gambler 500 2500 1000
uses about 1 billion coin flips —— 197 wins of 1000

Remarks
« Computer simulation can help validate mathematical analysis.

* For this problem, mathematical analysis is simpler (if you know the math).
* For more complicated variants, computer simulation may be the best plan of attack.

48

What does this program print?

int height = 6;
for (int i = 1; i <= height; i++) {
for (int j = 1; j <= height - i; j++) {
System.out.print(" ");
}
for (int j = 1; j <= (2 *1i - 1); j++) {
System.out.print("*");
}

System.out.println();

}

for (int i = 1; i <= 2; i++) {
for (int j = 1; j <= height -
System.out.print(" ");

}
System.out.println("|||");

And the answer is:

int height = 6; *
for (int i = 1; i <= height; i++) { s
for (int j = 1; j <= height - 1i; j++) {
System.out.print(" "); oAk
} >k >k >k % % k
for (int j =1; j <= (2 *1 - 1); j++) { % 5k 5k 5k 5k %k % K k
System.out.print("*"); S ok sk ok ok 3k ok ok K ok

}
System.out.println();

| ']
} ||
for (int i = 1; 1 <= 2; i++) {
for (int j = 1; j <= height - 2; j++) {

System.out.print(" ");

}
System.out.printin("|[[");

49 / 61

For vs. While

For vs. while (1/2)

These two programs both perform a countdown to rocket liftoft:

While Loop: For Loop:

public class CountdownWhile {
public static void main(String[] args) {
int count = 10;
while (count > 0) {

public class CountdownFor {
public static void main(String[] args) {
for (int count = 10; count > 0; count--) {

System.out.print(count + "...");
System.out.print(count + "..."); 1
count--; System.out.println("Liftoff! «’");
} }
System.out.println("Liftoff! «’"); }

Both programs output:

10... 9... 8... (...) 2... 1... Liftoff! ¢

51/61

For vs. while (2/2)

For-loops and while-loops are equivalent.

Every for-loop can be rewritten as a while-loop and vice-versa.

Program For-loop While-loop
Print 0 -9
for (int 1 = 0; i < 10; i++) { int i = 0;
System.out.println(i); while (i < 10) {
} System.out.println(i);
i++;
}
Count flips until tails |
int ¢ = 0; double n = 0.0;
for (double n = 0.0; n < 0.5; n = Math.random()) { int ¢ = 0;
C++; while (n < 0.5) {
} n = Math.random();
System.out.println(c); C++;
}

System.out.println(c);

52 /61

Rewrite the program below to use for-loops:

public class Main {
public static void main(String[] args) {
int i = 1;
int j = 1;
while (i <= 3) {
j=1
while (j <= 1i) {
System.out.print("*");

j++;
if (j = 1) {
i++;

}
}
System.out.println();

Scope

What is scoping?

The scope of a variable is the region where it can be accessed.
« Variables are created when they are declared.

« Variables are destroyed when their block ends.

« A block is delimited by curly braces: { }.

« Variables declared inside a block are not accessible outside of the block.

54 /61

Example: Scope (1/2)

We can use variables in scope, but not variables out of scope:

int x = 1;

if (true) {
int y = 3;

}

System.out.println(x);

OK: x is in scope

int x = 1;
if (true) {
int y = 3;

System.out.println(y);

OK: y is in scope

int x = 1;

if (true) {
int y = 3;

}

System.out.println(y);

ERROR: y is out of scope

55/ 61

Example: Scope (2/2)

Variables have different scopes in different blocks:

public class Main {
public static void main(String[] args) {

int a = 1; // Scope: entire main method
if (a > 0) {
int b = 2; // Scope: if block only
System.out.println(b);
}
// System.out.println(b); // ERROR: b is out of scope
for (int i =0, j =10; i < j; i++, j--) { // 1 and j scope: for block only
int sum = i + j; // sum scope: for block only
System.out.println(sum); // OK: sum in scope
}
// System.out.println(i); // ERROR: i is out of scope
// System.out.println(j); // ERROR: j 1is out of scope
System.out.println(a); // OK: a is still in scope

56 /61

Prologue

Compiler error of the week

What is the problem here?

int sum = 0;
int i = 0;
while (i < 10){
int tmp = 0;
if (1 % 2 == 0){
for (int j = 0; j < 10; j += 2){
tmp -= j;}} else {
for (int j = 0; j < 10; j += 2){
tmp += j; }}
sum += tmp * j; i++; }

58 /61

Compiler error of the week

What is the problem here?

int sum = 0;
int i = 0;
while (i < 10){

int tmp = 0;
if (1 %2 == 0){ java: cannot find symbol
for (int j = 0; j < 10; j += 2){ symbol: variable j

tmp -= j;}} else {

for (int j = 0; j < 10; j += 2){
tmp += j; }}

sum += tmp * j; i++; }

58 /61

Live Programming

Live Programming

An equivalent while and for-loop.

Using a loop as an if-statement.

Flattening nested-ifs.

Flattening nested-loops.

Debugging infinite loops.
Simulate Gambler’s Ruin

60 / 61

Sources for slides and images

« https://introcs.cs.princeton.edu/java/lectures/
« https://xked.com/1924/
« https://commons.wikimedia.org/wiki/File:Moai_Rano_raraku.jpg

61/ 61

https://introcs.cs.princeton.edu/java/lectures/
https://xkcd.com/1924/
https://commons.wikimedia.org/wiki/File:Moai_Rano_raraku.jpg

	Week 3: Conditionals and Loops
	Monday
	Thursday

	Prologue
	Quote of the Week
	Epigram of the Week

	Conditionals
	Example: Guessing Game (revisited)
	Example: Drinking age
	Example: Tax brackets
	Example: Greeting Dracula
	Example: Greeting Dracula
	Example: Division by zero check
	Example: Negative root check
	Example: Infinite slope
	If and if-else
	Program equivalence
	Quiz
	Nested ifs
	Unnesting ifs
	What does this program print?
	What happens when you evaluate 1.0 / 0 ?

	Loops
	Don't repeat yourself (DRY)
	Ten hellos
	Example: A While and If
	Example: Answer
	Control flow
	Recall: Expressions and statements
	If, if-else, while
	While loop: Terminating
	While loop: Non-terminating
	While loop: Immediate termination
	While true
	Why would we ever want to deliberately write an infinite loop?
	An ode to an infinite loop
	Escaping infinite loops
	Program trace
	 Adding print statements to a program to understand its execution is called print-debugging.Is there a better way?

	For-loops
	What is a for-loop?
	Why use a for-loop?
	What does this program print?
	The many faces of for (1/2)
	The many faces of for (2/2)
	When not to use for-loop
	Increment, decrement, and re-assignment
	What does this program print?
	What does this program print?
	And the answer is:

	For vs. While
	For vs. while (1/2)
	For vs. while (2/2)
	Rewrite the program below to use for-loops:

	Scope
	What is scoping?
	Example: Scope (1/2)
	Example: Scope (2/2)

	Prologue
	Compiler error of the week

	Live Programming
	Live Programming
	Sources for slides and images

