
Introduction to Programming
Week 15

Magnus Madsen



Week 15: Outline

Monday

• Modern Java: Lambdas, Streams, Records, Pattern Matching, Type Inference

Thursday

• Wrap-Up and Exam

1 / 23



Quote of the Week

“That language is an instrument of human reason, and not merely a medium for the 

expression of thought, is a truth generally admitted.”

— George Boole

2 / 23



Epigram of the Week

“If a listener nods his head when you’re explaining your program, wake him up.”

— Alan Perlis

3 / 23



Modernizing Java with 

Functional Programming



TODO 🐑 ML: Java is old, but was 

pushed to modernize because of 

Kotlin, Scala



Lambdas and Functional 

Interfaces

TODO 🐑 ML: already saw a bit 

about Lambdas last week



TODO 🐑 ML: what is a lambda, 

really?



Streams

TODO 🐑 ML: examples, compare 

with loops

TODO 🐑 ML: note Pureness



TODO 🐑 ML: things go wrong 

without pureness



Records

TODO 🐑 ML: compare with 

boilerplate stuff



Pattern Matching

TODO 🐑 ML:



Type Inference

TODO 🐑 ML: var

TODO 🐑 ML: show where it 

cannot infer



Course Description



Course content

Foundational: Understanding what a Java program is, how to compile it, and how to 

execute it. Reasoning about whether a program is well-formed and about its behavior.

Imperative Concepts: Writing simple methods using local variables, if-then-else, and for- 

and while loops. Writing simple data structures using plain objects and arrays.

Object-Oriented Concepts: Writing simple classes with encapsulated state, getters and 

setters, and using interfaces and inheritance.

Programming Techniques: Programming with common data structures, such as lists, sets, 

and maps. Applying basic debugging and testing techniques to understand how a program 

behaves. Manipulating the file system, including the creation, reading, and writing of files.

14 / 23



Learning objectives (1/2)

After the course, students will be able to:

• Explain how to write a Java computer program, compile it, and execute it.

• Use elementary imperative programming language constructs, including: primitive data 

types, local variables, assignment, arrays, if-then-else, and for- and while loops.

• Use elementary object-oriented programming language constructs, including: classes, 

interfaces, objects, and methods.

• Use common data structures such as lists, sets, and maps.

15 / 23



Learning objectives (2/2)

After the course, students will be able to:

• Identify, explain, and overcome compiler errors (e.g. syntax, semantic, or type errors).

• Apply programming techniques to write small programs in imperative or object-oriented 

style.

• Apply basic debugging and testing techniques to understand and correct program 

behavior.

• Apply advanced programming features such as inheritance and generics.

16 / 23



Exam



Exam

The exam consists of two parts:

ℹ️

Part A: An individual take-home programming project. The exam is open-book, i.e. 

students may use all materials available except Generative AI. Students may discuss 

the project with each other, but may not share any source code.

ℹ️

Part B: An individual written exam. The exam is closed-book, i.e. students may not 

use any materials. The scope of the written exam is the entire course syllabus plus 

the take-home programming project.

The two parts take place at different times and places.

• You have three days for the take-home programming project.

• You have two hours for the written exam.

18 / 23



Exam

You obtain one grade weighted approximately equally between Part A and Part B.

The Danish Grading System. The so-called “7-trins skalaen”:

Grade Danish English ECTS
12 Fremragende Outstanding A
10 Fortrinligt Excellent B
7 Godt Good C
4 Jævnt OK D

02 Tilstrækkeligt Adequate E
00 Utilstrækkeligt Inadequate Fx
−3 Ringe Poor F

cf. https://ufm.dk/en/education/the-danish-education-system/grading-system

19 / 23

https://ufm.dk/en/education/the-danish-education-system/grading-system


How to prepare for the exam

✔️ I have read and understood the textbook and other material.

✔️ I have solved all weekly exercises and understood them.

✔️ I have completed all mandatory hand-ins and understood the feedback from the TA.

✔️ I have attended lectures, TA classes, and the study cafe.

✔️ Whenever I did not understand something, I asked for help.

If you do these things, you will be successful 🌈 🎉 🥳.

20 / 23



Exam



Example Question 1:

Q: Write seven Java keywords.

22 / 23



Example Question 2:

Q: What is double buffering?

23 / 23


	Week 15: Outline
	Monday
	Thursday

	Quote of the Week
	Epigram of the Week
	Modernizing Java with Functional Programming
	Lambdas and Functional Interfaces
	Streams
	Records
	Pattern Matching
	Type Inference
	Course Description
	Course content
	Learning objectives (1/2)
	Learning objectives (2/2)

	Exam
	Exam
	Exam
	How to prepare for the exam

	Exam
	Example Question 1:
	Example Question 2:


