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Week 15: Outline

Monday

• Modern Java: Lambdas, Streams, Records, Pattern Matching, Type Inference

Thursday

• Wrap-Up and Exam
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Quote of the Week

“That language is an instrument of human reason, and not merely a medium for the 

expression of thought, is a truth generally admitted.”

— George Boole
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Epigram of the Week

“If a listener nods his head when you’re explaining your program, wake him up.”

— Alan Perlis
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Modernizing Java with 

Functional Programming



TODO 🐑 ML: Java is old, but was 

pushed to modernize because of 

Kotlin, Scala



Lambdas and Functional 

Interfaces

TODO 🐑 ML: already saw a bit 

about Lambdas last week



TODO 🐑 ML: what is a lambda, 

really?



Streams

TODO 🐑 ML: examples, compare 

with loops

TODO 🐑 ML: note Pureness



TODO 🐑 ML: things go wrong 

without pureness



Records

TODO 🐑 ML: compare with 

boilerplate stuff



Pattern Matching

TODO 🐑 ML:



Type Inference

TODO 🐑 ML: var

TODO 🐑 ML: show where it 

cannot infer



Course Description



Course content

Foundational: Understanding what a Java program is, how to compile it, and how to 

execute it. Reasoning about whether a program is well-formed and about its behavior.

Imperative Concepts: Writing simple methods using local variables, if-then-else, and for- 

and while loops. Writing simple data structures using plain objects and arrays.

Object-Oriented Concepts: Writing simple classes with encapsulated state, getters and 

setters, and using interfaces and inheritance.

Programming Techniques: Programming with common data structures, such as lists, sets, 

and maps. Applying basic debugging and testing techniques to understand how a program 

behaves. Manipulating the file system, including the creation, reading, and writing of files.
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Learning objectives (1/2)

After the course, students will be able to:

• Explain how to write a Java computer program, compile it, and execute it.

• Use elementary imperative programming language constructs, including: primitive data 

types, local variables, assignment, arrays, if-then-else, and for- and while loops.

• Use elementary object-oriented programming language constructs, including: classes, 

interfaces, objects, and methods.

• Use common data structures such as lists, sets, and maps.
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Learning objectives (2/2)

After the course, students will be able to:

• Identify, explain, and overcome compiler errors (e.g. syntax, semantic, or type errors).

• Apply programming techniques to write small programs in imperative or object-oriented 

style.

• Apply basic debugging and testing techniques to understand and correct program 

behavior.

• Apply advanced programming features such as inheritance and generics.
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Exam



Exam

The exam consists of two parts:

ℹ️

Part A: An individual take-home programming project. The exam is open-book, i.e. 

students may use all materials available except Generative AI. Students may discuss 

the project with each other, but may not share any source code.

ℹ️

Part B: An individual written exam. The exam is closed-book, i.e. students may not 

use any materials. The scope of the written exam is the entire course syllabus plus 

the take-home programming project.

The two parts take place at different times and places.

• You have three days for the take-home programming project.

• You have two hours for the written exam.
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Exam

You obtain one grade weighted approximately equally between Part A and Part B.

The Danish Grading System. The so-called “7-trins skalaen”:

Grade Danish English ECTS
12 Fremragende Outstanding A
10 Fortrinligt Excellent B
7 Godt Good C
4 Jævnt OK D

02 Tilstrækkeligt Adequate E
00 Utilstrækkeligt Inadequate Fx
−3 Ringe Poor F

cf. https://ufm.dk/en/education/the-danish-education-system/grading-system
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How to prepare for the exam

✔️ I have read and understood the textbook and other material.

✔️ I have solved all weekly exercises and understood them.

✔️ I have completed all mandatory hand-ins and understood the feedback from the TA.

✔️ I have attended lectures, TA classes, and the study cafe.

✔️ Whenever I did not understand something, I asked for help.

If you do these things, you will be successful 🌈 🎉 🥳.
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Exam



Example Question 1:

Q: Write seven Java keywords.
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Example Question 2:

Q: What is double buffering?
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