
Introduction to Programming
Week 13

Magnus Madsen

Week 13: Outline

• Exceptions: throwing and catching

• Checked vs. unchecked exceptions

• The exception hierarchy

• User-defined exceptions

• Exception chaining

• Try-Catch-Finally and Try-With-Resources

• File I/O basics

1 / 59

Prologue

Quote of the Week

“As soon as we started programming, we found to our surprise that it wasn’t as easy to get

programs right as we had thought. Debugging had to be discovered. I can remember the

exact instant when I realized that a large part of my life from then on was going to be spent

in finding mistakes in my own programs.”

— Maurice Wilkes

3 / 59

Epigram of the Week

“If you lie to the computer, it will get you.”

— Perry Farrar

4 / 59

When Things Go Wrong

Ariane 5

On June 4, 1996, the Ariane 5

rocket exploded mid-launch

due to a software bug.

6 / 59

How Can Programs Go Wrong?

The program is used incorrectly:

• User wants to open a file, but the file does not exist.

• User wants to connect to a domain, but the domain does not exist.

• User wants to perform an action, but does not have permission.

7 / 59

How Can Programs Go Wrong?

The program is used incorrectly:

• User wants to open a file, but the file does not exist.

• User wants to connect to a domain, but the domain does not exist.

• User wants to perform an action, but does not have permission.

The program depends on unreliable resources:

• The network is down.

• The file system is full.

7 / 59

How Can Programs Go Wrong?

The program is used incorrectly:

• User wants to open a file, but the file does not exist.

• User wants to connect to a domain, but the domain does not exist.

• User wants to perform an action, but does not have permission.

The program depends on unreliable resources:

• The network is down.

• The file system is full.

The program violates a protocol or performs a nonsensical operation:

• The program tries to index outside the bounds of an array.

• The program tries to divide by zero.

• The program tries to invoke a method on a null object.

7 / 59

How Can We Handle Errors?

The program is used incorrectly:

• Explain to the user what is wrong and ask for a corrective action!

• Recoverable, we can ask the user for help.

8 / 59

How Can We Handle Errors?

The program is used incorrectly:

• Explain to the user what is wrong and ask for a corrective action!

• Recoverable, we can ask the user for help.

The program depends on unreliable resources:

• If the network is down, we can try again later.

• If the file system is full, we can ask for corrective action.

• Often recoverable. Perhaps the problem will fix itself or the user can help.

8 / 59

How Can We Handle Errors?

The program is used incorrectly:

• Explain to the user what is wrong and ask for a corrective action!

• Recoverable, we can ask the user for help.

The program depends on unreliable resources:

• If the network is down, we can try again later.

• If the file system is full, we can ask for corrective action.

• Often recoverable. Perhaps the problem will fix itself or the user can help.

The program violates a protocol or performs a nonsensical operation:

• Programming bugs: we, the developers, have made a mistake.

• Almost always unrecoverable, the program itself must be corrected.

• Not much to do, other than to try to save data, and exit the program.

8 / 59

Signalling Errors

How can we signal errors within a program?

Store an error code in a global variable

• Commonly used in imperative languages such as C, Pascal, and Fortran.

9 / 59

Signalling Errors

How can we signal errors within a program?

Store an error code in a global variable

• Commonly used in imperative languages such as C, Pascal, and Fortran.

Return an error code, if any. Otherwise return a success value

• Commonly used in imperative languages such as C, Pascal, and Fortran.

• We have to distinguish between error codes and successful return values.

9 / 59

Signalling Errors

How can we signal errors within a program?

Store an error code in a global variable

• Commonly used in imperative languages such as C, Pascal, and Fortran.

Return an error code, if any. Otherwise return a success value

• Commonly used in imperative languages such as C, Pascal, and Fortran.

• We have to distinguish between error codes and successful return values.

Return a data structure which encodes success or failure

• Commonly used in functional languages such as Scala, Haskell, and OCaml.

9 / 59

Signalling Errors

How can we signal errors within a program?

Store an error code in a global variable

• Commonly used in imperative languages such as C, Pascal, and Fortran.

Return an error code, if any. Otherwise return a success value

• Commonly used in imperative languages such as C, Pascal, and Fortran.

• We have to distinguish between error codes and successful return values.

Return a data structure which encodes success or failure

• Commonly used in functional languages such as Scala, Haskell, and OCaml.

Redirect control-flow with an exception

• Commonly used in object-oriented languages such as Java, C#, Python, and C++.

9 / 59

Exceptions

What Is an Exception?

An exception is a non-local control-flow mechanism that

interrupts normal execution and jumps to a handler to deal

with abnormal situations.

Key Concepts:

• We use exceptions when we encounter unexpected situations or error conditions.

• We throw and catch exceptions. A Java exception is an object (an instance of a class).

• We throw an exception when we want to abort execution in a method.

• We catch an exception when we want to handle it and continue execution.

• If an exception is never caught, it reaches main, and the program aborts.

11 / 59

The Call Stack

Recall: We have seen that execution of a program relies on the call stack:

public class Main {

 public static void main(String[] args) { f(); }

 static void f() { g(); }

 static void g() { h(); }

 static void h() { throw new RuntimeException(); }

}

When an exception is thrown, and not caught, it prints the stack trace:

Exception in thread "main" java.lang.RuntimeException

 at Main.h(Main.java:5)

 at Main.g(Main.java:4)

 at Main.f(Main.java:3)

 at Main.main(Main.java:2)

12 / 59

Example: Throw

We can use exceptions to abort execution when given illegal input:

public class BankAccount {

 private int balance;

 public void withdraw(int amount) {

 if (amount <= 0) {

 String msg = "Amount must be positive.";

 throw new IllegalArgumentException(msg);

 }

 if (amount > balance) {

 String msg = "Amount must be less than or equal to the balance.";

 throw new IllegalArgumentException(msg);

 }

 balance = balance - amount;

 }

}

13 / 59

Example: Try-Catch

We can catch the exceptions elsewhere and ask for new input:

public static void main(String[] args) {

 BankAccount account = new BankAccount(100);

 while (true) {

 System.out.println("Enter an amount to withdraw:");

 int amount = StdIn.readInt();

 try {

 account.withdraw(amount);

 } catch (IllegalArgumentException e) {

 System.out.println("Oopsie... Not enough funds!");

 }

 }

}

Remark: No stack trace is printed because the exception is caught and handled.

14 / 59

Finding an Exception Handler

When an exception is thrown, the runtime searches for a

suitable exception handler by unwinding the call stack.

The search proceeds as follows:

• The runtime examines the current stack frame for a matching handler.

• If a handler is found, execution resumes at that point.

• If no handler is found, the stack frame is popped and the search continues down the stack.

• If the search reaches main, the program terminates and prints a stack trace.

15 / 59

Q:

What does the following program fragment print?

public static void main(String[] args) {

 try {

 System.out.print("Hello ");

 throw new IllegalArgumentException("Oops!");

 System.out.print("World");

 } catch (IllegalArgumentException e) {

 System.out.print("Moon");

 }

 System.out.println("Goodbye");

}

Magnus’ Phone Analogy

☎️
Exceptions are for non-local control.

16 / 59

Checked and Unchecked

Exceptions

Checked and Unchecked Exceptions

In Java, exceptions come in two variants1:

• A checked exception must be caught or re-thrown.

‣ A subclass of Exception is a checked exception.

‣ Enforced by the Java compiler.

• An unchecked exception may be caught or re-thrown.

‣ A subclass of RuntimeException is an unchecked exception.

We have seen IllegalArgumentException as an example of an unchecked exception.

1Here we ignore Java’s Error class.

18 / 59

Rationale for Checked and Unchecked Exceptions

Checked exceptions should be used for recoverable error conditions:
• Examples: file not found, network failure, database unavailable.

• The compiler enforces explicit handling of these exceptions.

Unchecked exceptions should be used for programming defects:
• Examples: null pointer dereference, array index out of bounds, division by zero.

• These indicate bugs that should be corrected in the source code.

19 / 59

Example: Checked Exceptions (1/2)

We can write a Java method to check if a file contains a specific needle string:

static boolean fileContains(String needle, String file) {

 String text = Files.readString(Path.of(file));

 return text.contains(needle);

}

Here we use Files.readString which may throw an IOException.

20 / 59

Example: Checked Exceptions (1/2)

We can write a Java method to check if a file contains a specific needle string:

static boolean fileContains(String needle, String file) {

 String text = Files.readString(Path.of(file));

 return text.contains(needle);

}

Here we use Files.readString which may throw an IOException.

Since IOException is a checked exception (a subclass of Exception), Java complains:

unreported exception IOException; must be caught or declared to be thrown

20 / 59

Example: Checked Exceptions (2/2)

(A) We can catch the exception:

static boolean fileContains(String needle, String file) {

 try {

 String text = Files.readString(Path.of(file));

 return text.contains(needle);

 } catch (IOException e) {

 return false;

 }

}

or (B) We can declare that fileContains throws it:

static boolean fileContains(String needle, String file) throws IOException {

 String text = Files.readString(Path.of(file));

 return text.contains(needle);

}

21 / 59

Q:

Which should be checked or unchecked?

• NegativePriceException

• InvalidPinException

• OutOfStockException

• NegativeAltitudeException

• OutOfMemoryException

• RunwayOccupiedException

• InvalidISBNException

• NegativeAgeException

• InsufficientFundsException

Rethrowing Exceptions

We can catch an exception, perform some action, and then rethrow it:

public void processPayment(double amount) throws PaymentException {

 try {

 creditCard.charge(amount);

 } catch (PaymentException e) {

 logger.error("Payment failed: " + e.getMessage());

 throw e; // Rethrow the same exception

 }

}

We can also catch one exception and throw a different one:

try {

 Files.readString(Path.of(file));

} catch (IOException e) {

 throw new IllegalArgumentException("Invalid file: " + file);

}

22 / 59

Q:

What can you say about this program fragment?

public static void main(String[] args) {

 if (f()) { g() }

}

static boolean f() {

 try {

 g();

 return true;

 } catch (IOException e) {

 throw IllegalArgumentException("...");

 }

}

static void g() throws IOException {

 Files.readString(Path.of("data.txt"));

}

The Exception Hierarchy

The Exception Hierarchy

Throwable

Error

OutOfMemoryError StackOverflowError

Exception

IOException DataFormatException RuntimeException

NullPointerException ArrayIndexOutOfBoundsException

24 / 59

Common Unchecked Exceptions

ArithmeticException

Thrown for exceptional arithmetic conditions, such

as integer division by zero or modulo by zero.

ArrayIndexOutOfBoundsException

Thrown when accessing or modifying an array

element with an invalid index (negative or ≥ length).

NullPointerException

Thrown when using a null reference, such as calling

methods, accessing fields, or indexing arrays on null.

IllegalStateException

Thrown when a method is invoked at an illegal or

inappropriate time.

Scanner scanner = new Scanner(System.in);

scanner.close();

scanner.nextInt(); // Scanner is closed

NumberFormatException

Thrown when converting a string to a numeric type

with invalid format.

String text = "not a number";

int value = Integer.parseInt(text);

All of these are unchecked exceptions.

25 / 59

Overview: Checked and Unchecked Exceptions

Type Extends Examples

Checked Exception

IOException, SQLException,

FileNotFoundException,

ClassNotFoundException

Unchecked RuntimeException

NullPointerException,

IllegalArgumentException,

ArithmeticException,

ArrayIndexOutOfBoundsException

• Checked exceptions must be caught or declared to be thrown.

• Unchecked exceptions may be left unhandled (but may crash the program).

26 / 59

Try-Catch Uses Subtyping

Exception handlers leverage polymorphism: a catch clause

matches the declared type and all its subtypes.

For example:

try {

 int result = 10 / 0;

 System.out.println(result);

} catch (RuntimeException e) {

 System.out.println("Caught!");

}

27 / 59

User-Defined Exceptions

User-Defined Exceptions (1/2)

We can define our own exceptions by extending the

RuntimeException class or the Exception class.

For example:

public class NegativeAmountException extends RuntimeException {

 public NegativeAmountException() {

 super("Negative amount entered.");

 }

}

29 / 59

User-Defined Exceptions (2/2)

Exceptions are ordinary classes that can have fields and methods:

public class InsufficientFundsException extends RuntimeException {

 private int deficit;

 public InsufficientFundsException(int deficit) {

 super("Insufficient funds. Deficit: " + deficit);

 this.deficit = deficit;

 }

 public int getDeficit() {

 return deficit;

 }

}

30 / 59

Multiple Catch Clauses

We can catch more than one exception:

public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 BankAccount account = new BankAccount(100);

 while (true) {

 System.out.println("Enter an amount to withdraw:");

 try {

 int amount = scanner.nextInt();

 account.withdraw(amount);

 } catch (NegativeAmountException e) {

 System.out.println("Nice try! No negative amounts!");

 } catch (InsufficientFundsException e) {

 System.out.println("Oops! You need $" + e.getDeficit() + " more!");

 } catch (InputMismatchException e) {

 System.out.println("That's not a number, silly!");

 scanner.nextLine(); // Clear invalid input

 }

 }

}

31 / 59

Exception Chaining

Exception Chaining (1/3)

Sometimes an exception is the result of a series of unfortunate events.

We can use exception chaining to connect events to their root cause.

An exception constructor typically has a cause parameter, which we can use to specify the

exception that caused it.

For example:

public class RiderException extends Exception {

 public RiderException(String message, Throwable cause) {

 super(message, cause);

 }

}

33 / 59

Exception Chaining (2/3)

public static void main(String[] args) throws Exception {

 try {

 new Rider(...).charge();

 } catch (RiderException e) {

 throw new Exception("rider lost", e);

 }

}

public void charge() throws RiderException {

 try {

 horse.gallop();

 } catch (HorseException e) {

 throw new RiderException("horse lost", e);

 }

}

...

We can use exception

chains to trace the root

cause of an issue.

For want of a naile

the shoe is lost,

for want of a shoe

the horse is lost,

for want of a horse

the rider is lost.

34 / 59

Exception Chaining (3/3)

When an exception occurs, we can see what other exception caused it.

Exception in thread "main" java.lang.Exception: rider lost

 at WantOfANail.main(WantOfANail.java:6)

Caused by: RiderException: horse lost

 at Rider.charge(WantOfANail.java:22)

 at WantOfANail.main(WantOfANail.java:4)

Caused by: HorseException: shoe lost

 at Horse.gallop(WantOfANail.java:38)

 at Rider.charge(WantOfANail.java:20)

 ... 1 more

Caused by: ShoeException: want of nail

 at Shoe.checkNails(WantOfANail.java:56)

 at Shoe.secure(WantOfANail.java:51)

 at Horse.gallop(WantOfANail.java:36)

 ... 2 more

35 / 59

Try-Catch-Finally

Motivation: Finally

You turn on the stove to make some food,

But something on TV changes your mood,

You watch, you forget,

And now with regret,

Wish you’d turned it off—you should!

37 / 59

Motivation: Finally

You turn on the stove to make some food,

But something on TV changes your mood,

You watch, you forget,

And now with regret,

Wish you’d turned it off—you should!

37 / 59

Motivation: Finally

You turn on the stove to make some food,

But something on TV changes your mood,

You watch, you forget,

And now with regret,

Wish you’d turned it off—you should!

❗️
Exceptions abort computation, but sometimes we need to finish what we

started.

37 / 59

What is Finally?

A finally block contains code that always executes,

regardless of whether an exception was thrown or caught.

Key Concepts:

• The finally block runs after the try and any catch blocks.

• It executes even if an exception is thrown and not caught.

• It executes even if the try or catch block contains a return statement.

• It is used to clean up resources (close files, release locks, etc.).

38 / 59

Example: Turning Off the Stove (1/2)

When we use exceptions, we risk leaving the stove on:

public static void main(String[] args) {

 Stove stove = new Stove();

 try {

 stove.turnOn();

 makeDinner();

 stove.turnOff();

 } catch (BoredException e) {

 System.out.println("Got bored: " + e.getMessage());

 }

}

public static void makeDinner() throws BoredException {

 System.out.println("Preparing ingredients...");

 throw new BoredException("This is taking forever!");

}

39 / 59

Example: Turning Off the Stove (2/2)

We can ensure we turn off the stove by adding a finally block.

public static void main(String[] args) {

 Stove stove = new Stove();

 try {

 stove.turnOn();

 makeDinner();

 } catch (BoredException e) {

 System.out.println("Got bored: " + e.getMessage());

 } finally {

 stove.turnOff();

 }

}

40 / 59

Q:

What does this program fragment print?

try {

 try {

 System.out.println("A");

 throw new RuntimeException();

 } catch (RuntimeException e) {

 System.out.println("B");

 throw e;

 } finally {

 System.out.println("C");

 }

 System.out.println("D");

} finally {

 System.out.println("E");

}

System.out.println("F");

Try-with-Resources

Motivation: Try-with-Resources

Try-with-Resources provides a cleaner and safer way to

manage resources that need cleanup.

Why use try-with-resources instead of finally?

• Less verbose and requires less boilerplate code.

• Automatically closes resources, reducing the chance of errors.

• Handles multiple resources elegantly.

42 / 59

Example: Try-With-Resources

Try-with-resources can simplify turning off the stove.

Using Finally:

Stove stove = new Stove();

try {

 stove.turnOn();

 makeDinner();

} catch (BoredException e) {

 ...

} finally {

 stove.turnOff();

}

Using try-with-resources:

try (Stove stove = new Stove()) {

 stove.turnOn();

 makeDinner();

} catch (BoredException e) {

 ...

}

43 / 59

Example: Try-With-Resources

public static void copyFile(String src, String dst) throws IOException {

 try (FileInputStream input = new FileInputStream(src);

 FileOutputStream output = new FileOutputStream(dst)) {

 byte[] buffer = new byte[1024];

 int bytesRead;

 while ((bytesRead = input.read(buffer)) != -1) {

 output.write(buffer, 0, bytesRead);

 }

 }

 // Both input and output are automatically closed

}

ℹ️ Resources are closed in the reverse order in which they were opened.

44 / 59

Q: What is the difference between

throw and throws?

File I/O

Introduction to File I/O

File I/O allows programs to work with persistent data that

survives beyond program execution.

Common use cases:

• Configuration files and user preferences

• Data storage (CSV, JSON, XML)

• Logs and reports

• Saving application state

46 / 59

Text Files vs. Binary Files

Programs typically work with two types of files:

Text Files:

• Human-readable characters

• Line-based structure

• Examples: .txt, .java, .csv, .json

• Can be opened in a text editor

Binary Files:

• Raw bytes of data

• Machine-readable format

• Examples: .jpg, .class, .pdf, .zip

• Appear as gibberish in a text editor

Note: In this course, we will focus exclusively on working with text files.

47 / 59

Example: Reading an Entire File as a String

We can use Files.readString() to read an entire file into a single String:

try {

 Path path = Path.of("data.txt");

 String content = Files.readString(path);

 System.out.println(content);

} catch (IOException e) {

 System.out.println("Could not read file: " + e.getMessage());

}

48 / 59

Example: Reading an Entire File as a List

We can use Files.readAllLines() to read a file into a List of lines:

try {

 Path path = Path.of("data.txt");

 List<String> lines = Files.readAllLines(path);

 for (String line : lines) {

 System.out.println(line);

 }

} catch (IOException e) {

 System.out.println("Could not read file: " + e.getMessage());

}

49 / 59

Example: Writing a String to a File

We can use Files.writeString() to write a String to a file:

try {

 Path path = Path.of("output.txt");

 String content = "Hello, World!\nThis is a test file.";

 Files.writeString(path, content);

} catch (IOException e) {

 System.out.println("Could not write file: " + e.getMessage());

}

50 / 59

Example: Writing a List to a File

We can use Files.write() to write a List of lines to a file:

try {

 Path path = Path.of("animals.txt");

 List<String> animals = new ArrayList<>();

 animals.add("Giraffe");

 animals.add("Platypus");

 Files.write(path, animals);

} catch (IOException e) {

 System.out.println("Could not write file: " + e.getMessage());

}

51 / 59

Recap: Simple File I/O Methods

We have seen four simple methods for File I/O:

Reading Files:

• Files.readString(path)

‣ Returns entire file as a String

• Files.readAllLines(path)

‣ Returns file as List of lines

Writing Files:

• Files.writeString(path, string)

‣ Writes a String to a file

• Files.write(path, list)

‣ Writes a List of lines to a file

Remark: All these methods require handling IOException.

Limitation: These operations require loading the entire file into memory, which can be

problematic for very large files.

52 / 59

Example: Processing a File Line-by-Line

We can use BufferedReader to process large files without loading everything into memory:

try {

 Path path = Path.of("server.log");

 BufferedReader reader = Files.newBufferedReader(path);

 String line;

 while ((line = reader.readLine()) != null) {

 if (line.contains("ERROR")) {

 System.out.println(line);

 }

 }

 reader.close();

} catch (IOException e) {

 System.out.println("Could not read file: " + e.getMessage());

}

53 / 59

Example: Using Try-With-Resources

We can use try-with-resources to automatically close the reader:

Path path = Path.of("server.log");

try (BufferedReader reader = Files.newBufferedReader(path)) {

 String line;

 while ((line = reader.readLine()) != null) {

 if (line.contains("ERROR")) {

 System.out.println(line);

 }

 }

 // Reader is automatically closed

} catch (IOException e) {

 System.out.println("Could not read file: " + e.getMessage());

}

54 / 59

The Files Class

The Files class provides static methods for working with

files, including reading, writing, and querying file properties.

Method Description

Files.exists(path) Check if file exists

Files.readString(path) Read entire file as String

Files.readAllLines(path) Read file as List of lines

Files.writeString(path, string) Write String to file

Files.write(path, list) Write List of lines to file

Files.newBufferedReader(path) Create BufferedReader for line-by-line reading

Files.newBufferedWriter(path) Create BufferedWriter for line-by-line writing

55 / 59

Epilogue

Error of the Week

What can you say about this program?

try {

 Files.readString(Path.of("data.txt"));

} catch (IOException e) {

 System.out.println("Oops! Something went wrong with I/O!");

} catch (FileNotFoundException e) {

 System.out.println("Where did that file go?");

}

57 / 59

Error of the Week

What can you say about this program?

try {

 Files.readString(Path.of("data.txt"));

} catch (IOException e) {

 System.out.println("Oops! Something went wrong with I/O!");

} catch (FileNotFoundException e) {

 System.out.println("Where did that file go?");

}

error: exception FileNotFoundException has already been caught

57 / 59

Live Programming

• BankAccount

‣ with deposit and withdraw.

‣ with InsufficientFundsException and TooManyFundsException

‣ the transfer method

58 / 59

Sources for Images and Slides

• https://introcs.cs.princeton.edu/java/lectures/

• https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_June_4_1996

• https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg

• https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg

• https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg

59 / 59

https://introcs.cs.princeton.edu/java/lectures/
https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_June_4_1996
https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg
https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg
https://commons.wikimedia.org/wiki/File:Fire_inside_an_abandoned_convent_in_Massueville,_Quebec,_Canada.jpg

	Week 13: Outline
	Prologue
	Quote of the Week
	Epigram of the Week

	When Things Go Wrong
	Ariane 5
	How Can Programs Go Wrong?
	How Can We Handle Errors?
	Signalling Errors

	Exceptions
	What Is an Exception?
	The Call Stack
	Example: Throw
	Example: Try-Catch
	Finding an Exception Handler
	What does the following program fragment print?
	Magnus' Phone Analogy

	Checked and Unchecked Exceptions
	Checked and Unchecked Exceptions
	Rationale for Checked and Unchecked Exceptions
	Example: Checked Exceptions (1/2)
	Example: Checked Exceptions (2/2)
	Which should be checked or unchecked?
	Rethrowing Exceptions
	What can you say about this program fragment?

	The Exception Hierarchy
	The Exception Hierarchy
	Common Unchecked Exceptions
	Overview: Checked and Unchecked Exceptions
	Try-Catch Uses Subtyping

	User-Defined Exceptions
	User-Defined Exceptions (1/2)
	User-Defined Exceptions (2/2)
	Multiple Catch Clauses

	Exception Chaining
	Exception Chaining (1/3)
	Exception Chaining (2/3)
	Exception Chaining (3/3)

	Try-Catch-Finally
	Motivation: Finally
	What is Finally?
	Example: Turning Off the Stove (1/2)
	Example: Turning Off the Stove (2/2)
	What does this program fragment print?

	Try-with-Resources
	Motivation: Try-with-Resources
	Example: Try-With-Resources
	Example: Try-With-Resources
	 What is the difference between throw and throws?

	File I/O
	Introduction to File I/O
	Text Files vs. Binary Files
	Example: Reading an Entire File as a String
	Example: Reading an Entire File as a List
	Example: Writing a String to a File
	Example: Writing a List to a File
	Recap: Simple File I/O Methods
	Example: Processing a File Line-by-Line
	Example: Using Try-With-Resources
	The Files Class

	Epilogue
	Error of the Week
	Live Programming
	Sources for Images and Slides

