
Introduction to Programming
Week 10

Magnus Madsen

Week 10: Outline

• Interfaces and Implementations

• Inheritance and Overriding

• Abstract Classes

• The Object Class

• Packages

1 / 65

Prologue

Quote of the Week

“The main activity of programming is not the origination of new independent programs, but

in the integration, modification, and explanation of existing ones.”

— Terry Winograd

3 / 65

Epigram of the Week

“Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.”

— Alan Perlis

4 / 65

Interfaces

What is an interface?

An interface is a contract that specifies what operations a class must provide.

Key Concepts:

• An interface defines method signatures without method bodies.

• A class implements one or more interfaces filling out the methods.

• Interfaces enables subtype polymorphism.

6 / 65

Example: Shape

We can use an interface to define a type for shapes:

public interface Shape {

 double getX();

 double getY();

 void setX(double x);

 void setY(double y);

 void draw();

}

The interface specifies the method signatures, but omits the method bodies.

We say that the methods are abstract methods.

7 / 65

Example: Square (1/2)

We can write an implementation of an interface using the implements keyword.

public class Square implements Shape {

 private double x;

 private double y;

 private double side;

 public Square(double x, double y, double side) {

 this.x = x;

 this.y = y;

 this.side = side;

 }

 ...

}

8 / 65

Example: Square (2/2)

A class must define all abstract methods from the interface:

public class Square implements Shape {

 // ... from previous slide ...

 double getX() { return x; }

 double getY() { return y; }

 void setX(double x) { this.x = x; }

 void setY(double y) { this.y = y; }

 void draw() {

 StdDraw.square(x, y, side / 2);

 }

}

We have now implemented Shape for Square. We say that Square is a subtype of Shape.

9 / 65

Example: Circle

We can also write a Circle class that implements the Shape interface:

public class Circle implements Shape {

 private double x;

 private double y;

 private double radius;

 public Circle(double x, double y, double radius) {

 this.x = x;

 this.y = y;

 this.radius = radius;

 }

 // ... getters and setters ...

 public void draw() {

 StdDraw.circle(x, y, radius);

 }

}

10 / 65

Example: Triangle

And we can write a Triangle class that implements the Shape interface:

public class Triangle implements Shape {

 private double x;

 private double y;

 private double size;

 public Triangle(double x, double y, double size) {

 this.x = x;

 this.y = y;

 this.size = size;

 }

 // ... getters and setters ...

 public void draw() {

 double[] xCoords = {x, x - size / 2, x + size / 2};

 double[] yCoords = {y + size / 2, y - size / 2, y - size / 2};

 StdDraw.polygon(xCoords, yCoords);

 }

}

11 / 65

Subtype Polymorphism (1/3)

We can write code like:

Square s = new Square(5, 5, 10);

Circle c = new Circle(5, 5, 10);

s.draw();

c.draw();

No surprises here.

12 / 65

Subtype Polymorphism (2/3)

But more interestingly we can write:

Shape s = new Square(5, 5, 10);

Shape c = new Circle(5, 5, 10);

r.draw();

c.draw();

We call this idea subtype polymorphism.

• Shape takes many forms; it is polymorphic.

Key Concepts:

• The static type of s and c is Shape.

• The dynamic type of s and c is Rectangle and Circle.

Remark: At runtime there are no shapes! There are only rectangles and circles.

13 / 65

Subtype Polymorphism (3/3)

What we can do with a Shape:

We can call the methods defined on Shape:

Shape s = ...

s.getX();

s.draw();

// ...

The interface guarantees that all

implementations provide these methods.

14 / 65

Subtype Polymorphism (3/3)

What we can do with a Shape:

We can call the methods defined on Shape:

Shape s = ...

s.getX();

s.draw();

// ...

The interface guarantees that all

implementations provide these methods.

What we cannot do with a Shape:

We cannot call methods that are only

available on a specific shape:

class Pyramid implements Shape {

 // ... fields, getters, setters ...

 public int getHeight() {

 return this.height;

 }

}

This won’t work:

Shape s = new Pyramid(...);

s.getHeight(); // Error!

14 / 65

Example: Using an Interface

We can use interfaces to define functions that are polymorphic.

Here is a function that can move any shape:

public static void move(Shape shape, double dx, double dy) {

 shape.setX(shape.getX() + dx);

 shape.setY(shape.getY() + dy);

}

We can use it as follows:

Square s = new Square(0, 0, 2);

move(c, 5, 5);

15 / 65

Example: An Array of Shapes (1/2)

We can use the Shape interface to create an array of shapes:

Shape[] shapes = new Shape[3];

shapes[0] = new Square(0.3, 0.5, 0.2);

shapes[1] = new Circle(0.5, 0.5, 0.1);

shapes[2] = new Triangle(0.7, 0.5, 0.15);

16 / 65

Example: An Array of Shapes (2/2)

We can create an animation of shapes moving together:

public static void main(String[] args) {

 Shape[] shapes = new Shape[3];

 shapes[0] = new Square(0.3, 0.5, 0.2);

 shapes[1] = new Circle(0.5, 0.5, 0.1);

 shapes[2] = new Triangle(0.7, 0.5, 0.15);

 StdDraw.enableDoubleBuffering();

 for (int i = 0; i < 100; i++) {

 StdDraw.clear();

 for (Shape shape : shapes) {

 move(shape, 0.002, 0.001);

 shape.draw();

 }

 StdDraw.show();

 StdDraw.pause(20);

 }

}

17 / 65

Q:

What can you say about this program?

public class Main {

 public static void main(String[] args) {

 Shape s = new Shape();

 s.setX(0.5);

 s.setY(0.5);

 s.draw();

 }

}

Q:
What are the static and dynamic types of the variables?

Square u = new Square(0, 0, 5);

Circle v = new Circle(0, 0, 5);

Shape w = u;

w = v;

w = null;

Subtyping and Assignability (1/2)

We say there is a subtyping relationship between Shape and Circle:

• Circle is a subtype of Shape.

• But Shape is most definitely not a subtype of Circle.

All humans are animals, but not all animals are humans!

18 / 65

Subtyping and Assignability (2/2)

We must respect the subtyping relation during assignment.

Valid assignments (subtype to supertype):

Circle c = new Circle(0.5, 0.5, 0.1);

Shape s = c; // OK: Circle is a subtype of Shape

Invalid assignments (supertype to subtype):

Shape s = new Circle(0.5, 0.5, 0.1);

Circle c = s; // Error: Shape is not a subtype of Circle

19 / 65

Multiple Interfaces (1/2)

Java allows a class to implement multiple interfaces.

We can define three interfaces:

public interface Shape {

 double getX();

 double getY();

 void draw();

}

public interface Movable {

 void move(double dx, double dy);

}

public interface Measurable {

 double getArea();

}

and have Circle implement all of them:

public class Circle implements Shape, Movable, Measurable {

 // ... fields and constructors ...

 public double getX() { return x; }

 public double getY() { return y; }

 public void draw() {

 StdDraw.circle(x, y, radius);

 }

 public void move(double dx, double dy) {

 this.x += dx;

 this.y += dy;

 }

 public double getArea() {

 return Math.PI * radius * radius;

 }

}

20 / 65

Multiple Interfaces (2/2)

All of the following assignments are now valid:

Circle c = new Circle(0.5, 0.5, 0.1);

Shape s = c; // OK: Circle implements Shape

Movable m = c; // OK: Circle implements Movable

Measurable a = c; // OK: Circle implements Measurable

Each variable gives access to different methods:

s.draw(); // Shape methods

m.move(0.1, 0.2); // Movable methods

a.getArea(); // Measurable methods

21 / 65

Q:

Which of the following assignments are valid?

Circle c = new Circle(...);

Shape s = new Circle(...);

Shape s1 = c; // (1)

Circle c1 = s; // (2)

Movable m1 = c; // (3)

Measurable a1 = s; // (4)

Shape s2 = m1; // (5)

Q:

Which of the following method calls are valid?

Shape s = new Circle(...);

Movable m = new Circle(...);

s.draw(); // (1)

s.move(0.1, 0.2); // (2)

s.getArea(); // (3)

m.draw(); // (4)

m.move(0.1, 0.2); // (5)

m.getArea(); // (6)

Example: Animals (1/2)

Different animals have different capabilities. We can model this with multiple interfaces:

public interface Animal {

 String makeSound();

}

public interface Swimmable {

 void swim();

}

public interface Flyable {

 void fly();

}

22 / 65

Example: Animals (1/2)

Different animals have different capabilities. We can model this with multiple interfaces:

public interface Animal {

 String makeSound();

}

public interface Swimmable {

 void swim();

}

public interface Flyable {

 void fly();

}

public class Duck implements Animal, Swimmable, Flyable {

 public String makeSound() {

 return "Quack!";

 }

 public void swim() {

 System.out.println("Duck is swimming");

 }

 public void fly() {

 System.out.println("Duck is flying");

 }

}

22 / 65

Example: Animals (2/2)

Different animals implement different combinations of interfaces:

public class Fish implements Animal, Swimmable {

 public String makeSound() { return "Blub!"; }

 public void swim() { System.out.println("Fish is swimming"); }

}

public class Bird implements Animal, Flyable {

 public String makeSound() { return "Tweet!"; }

 public void fly() { System.out.println("Bird is flying"); }

}

public class Cat implements Animal {

 public String makeSound() { return "Meow!"; }

}

23 / 65

Inheritance

What is Inheritance?

Inheritance is a mechanism where one class inherits fields

and methods from another class.

Key Concepts:

• A subclass (or child class) inherits from a superclass (or parent class).

• The subclass gains all the fields and methods of the superclass.

• The subclass can extend the superclass by adding new fields and methods.

• The subclass can override methods to provide specialized behavior.

• Inheritance is form of subtype polymorphism.

25 / 65

Example: Point and ColoredPoint (1/2)

We can write a superclass:

public class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() {

 return this.x;

 }

 public int getY() {

 return this.y;

 }

}

26 / 65

Example: Point and ColoredPoint (1/2)

We can write a superclass:

public class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() {

 return this.x;

 }

 public int getY() {

 return this.y;

 }

}

and we can write a subclass that extends Point:

public class ColoredPoint extends Point {

 private Color color;

 public ColoredPoint(int x, int y, Color color) {

 super(x, y);

 this.color = color;

 }

 public Color getColor() {

 return this.color;

 }

}

26 / 65

Example: Point and ColoredPoint (2/2)

We can create objects of both the superclass and the subclass:

Point p = new Point(10, 20);

ColoredPoint cp = new ColoredPoint(5, 15, Color.RED);

We can call inherited methods on the subclass:

System.out.println(cp.getX()); // 5

System.out.println(cp.getY()); // 15

System.out.println(cp.getColor()); // RED

We can also use subtype polymorphism:

Point p1 = new Point(10, 20);

Point p2 = new ColoredPoint(5, 15, Color.BLUE); // OK!

27 / 65

What is Dynamic Method Lookup?

Dynamic method lookup is the mechanism where Java

determines which method to call based on the actual type

of the object at runtime.

Recall:

• The static type is the declared type of a reference (variable, formal parameter, field).

• The dynamic type is the actual type of the object at runtime.

• Java uses the dynamic type to determine which method to call.

28 / 65

Example: Dynamic Method Lookup

We can create an array of Point objects that contains both Point and ColoredPoint:

Point[] points = new Point[3];

points[0] = new Point(0, 0);

points[1] = new ColoredPoint(1, 1, Color.RED);

points[2] = new ColoredPoint(2, 2, Color.BLUE);

We can call methods and draw each point:

for (Point p : points) {

 StdDraw.point(p.getX(), p.getY()); // Dynamic method lookup!

}

Java determines which getX() and getY() to call based on the dynamic type of each object.

29 / 65

The instanceof Operator

The instanceof operator tests whether an object is an

instance of a specific class or interface.

Point p1 = new Point(0, 0);

Point p2 = new ColoredPoint(1, 1, Color.RED);

System.out.println(p1 instanceof Point); // true

System.out.println(p1 instanceof ColoredPoint); // false

System.out.println(p2 instanceof Point); // true

System.out.println(p2 instanceof ColoredPoint); // true

30 / 65

Example: instanceof

We can use instanceof to check if a point is colored before drawing it:

Point[] points = new Point[3];

points[0] = new Point(0, 0);

points[1] = new ColoredPoint(1, 1, Color.RED);

points[2] = new ColoredPoint(2, 2, Color.BLUE);

for (Point p : points) {

 if (p instanceof ColoredPoint) {

 ColoredPoint cp = (ColoredPoint) p; // Cast

 StdDraw.setPenColor(cp.getColor());

 } else {

 StdDraw.setPenColor(Color.BLACK);

 }

 StdDraw.point(p.getX(), p.getY());

}

Remark: Using instanceof is bad style and againsts proper object-oriented design.

31 / 65

Safe and Unsafe Casts

Recall that we can cast between primitive types:

double x = 3.14;

int y = (int) x; // y is 3

32 / 65

Safe and Unsafe Casts

Recall that we can cast between primitive types:

double x = 3.14;

int y = (int) x; // y is 3

We can also cast between reference types in the inheritance hierarchy:

Valid cast (subclass to superclass, then back):

Point p = new ColoredPoint(1, 1, Color.RED);

ColoredPoint cp = (ColoredPoint) p; // OK!

Invalid cast (unrelated types):

Point p = new Point(0, 0);

Square s = (Square) p;

Exception in thread "main"

java.lang.ClassCastException

32 / 65

Overriding

What is Overriding?

Method overriding allows a subclass to provide a specific

implementation of a method that is already defined in its

superclass.

Key Concepts:

• A subclass can override a method from its superclass by redefining it.

• The overriding method must have the same signature (name, parameters, return type).

• The overriding method is called instead of the superclass method at runtime.

• Use the @Override annotation to ensure you are actually overriding a method.

34 / 65

Example: Overriding (1/2)

The superclass defines a method:

public class Employee {

 private String name;

 private double salary;

 public Employee(String name, double salary) {

 this.name = name;

 this.salary = salary;

 }

 public double getSalary() {

 return this.salary;

 }

}

and the subclass overrides it:

public class Manager extends Employee {

 public Manager(String name, double salary) {

 super(name, salary);

 }

 @Override

 public double getSalary() {

 return 2.5 * super.getSalary();

 }

}

35 / 65

Example: Overriding (2/2)

We can create instances of Employee and Manager, and call getSalary() on each:

Employee e = new Employee("Alice", 100_000);

Employee m = new Manager("Bob", 100_000);

System.out.println(e.getSalary()); // 100_000.0

System.out.println(m.getSalary()); // 250_000.0

36 / 65

What is super?

The super keyword is used to refer to the

superclass of the current object.

Key uses of super:

• Call superclass constructor: super(args) must be first in subclass constructor.

‣ A subclass must call one of its superclass constructors.

• Call superclass method: super.methodName() invokes the superclass version.

• Access superclass field: super.fieldName (very very rarely used).

37 / 65

Example: super

Earlier, we saw a call to a super constructor:

public Manager(String name, double salary) {

 super(name, salary); // Call Employee constructor

}

and a call to a super method:

@Override

public double getSalary() {

 return 2.5 * super.getSalary(); // Call Employee's getSalary()

}

38 / 65

Q:

What does this program print?

class Beverage {

 private int temperature;

 public Beverage(int temp) { this.temperature = temp; }

 public String serve() { return "Serving at " + temperature + "°C"; }

}

class Coffee extends Beverage {

 public Coffee(int temp) { super(temp); }

 public String serve() { return super.serve() + " with caffeine!"; }

}

public static void main(String[] args) {

 Beverage b = new Coffee(85);

 System.out.println(b.serve());

}

Q:

What does this program print?

class Book {

 private String title;

 private String author;

 public Book(String title, String author) {

 this.title = title; this.author = author;

 }

 public String describe() { return title + " by " + author; }

}

class AudioBook extends Book {

 private double duration;

 public AudioBook(String title, String author, double duration) {

 super(author, title); this.duration = duration;

 }

 public String descirbe() { return super.describe() + " (" + duration + "h)"; }

}

public static void main(String[] args) {

 Book b = new AudioBook("1984", "Orwell", 11.5);

 System.out.println(b.describe());

}

The @Override Annotation

The @Override annotation instructs the compiler that a method is intended to override a

method from a superclass or interface.

If we had written:

@Override

public String descirbe() {

 return super.describe() + " (" + duration + "h)";

}

The compiler would have caught our typo.

39 / 65

Abstract Classes

What is an Abstract Class?

An abstract class is a class that cannot be instantiated and

may contain abstract methods.

Key Concepts:

• An abstract class is declared with the abstract keyword.

• It can have both abstract methods (no body) and concrete methods (with body).

• Subclasses must implement all abstract methods or be abstract themselves.

• Abstract classes can have fields, constructors, and concrete methods like normal classes.

Remark: Abstract classes sit between interfaces and concrete classes: they provide partial

implementation while still allowing abstract behavior.

41 / 65

Example: Abstract Class (1/3)

As earlier, we can write an interface for Animal:

public interface Animal {

 String makeSound();

}

And we can write implementations:

public class Dog implements Animal {

 public String makeSound() {

 return "Woof!";

 }

}

public class Cat implements Animal {

 public String makeSound() {

 return "Meow!";

 }

}

public class Cow implements Animal {

 public String makeSound() {

 return "Moo!";

 }

}

But what happens when we want every animal to have an age?

42 / 65

Example: Abstract Class (2/3)

We want to avoid code duplication, so we change Animal to a proper class:

public class Animal {

 private int age;

 public Animal(int age) {

 this.age = age;

 }

 public int getAge() {

 return this.age;

 }

 public String makeSound() {

 return null;

 }

}

public class Dog extends Animal {

 public Dog(int age) {

 super(age);

 }

 public String makeSound() {

 return "Woof!";

 }

}

43 / 65

Example: Abstract Class (2/3)

We want to avoid code duplication, so we change Animal to a proper class:

public class Animal {

 private int age;

 public Animal(int age) {

 this.age = age;

 }

 public int getAge() {

 return this.age;

 }

 public String makeSound() {

 return null;

 }

}

public class Dog extends Animal {

 public Dog(int age) {

 super(age);

 }

 public String makeSound() {

 return "Woof!";

 }

}

Problem 1: We can now create Animal objects!

Problem 2: Forgetting to override makeSound is a

bomb waiting to go off.

43 / 65

Example: Abstract Class (3/3)

The solution is to make Animal into an abstract class and to declare makeSound as an

abstract method:

public abstract class Animal {

 private int age;

 public Animal(int age) {

 this.age = age;

 }

 public int getAge() {

 return this.age;

 }

 public abstract String makeSound();

}

public class Dog extends Animal {

 public Dog(int age) {

 super(age);

 }

 @Override

 public String makeSound() {

 return "Woof!";

 }

}

Solution: We cannot create Animal objects, and

subclasses must implement makeSound().

Moreover, we have avoided code duplication.

44 / 65

Overview: Interfaces, Abstract Classes, and Classes

Feature Interface Abstract Class Concrete Class

Can be instantiated? No No Yes

Can have fields? No Yes Yes

Can have constructors? No Yes Yes

Can have abstract methods? Yes (all) Yes (some) No

Can have concrete methods? No Yes Yes

Multiple inheritance? Yes (implements) No (extends) No (extends)

Use case Define contract Share code Implementation

45 / 65

What to use?

The Good: Interfaces and classes that implement them.

• Promotes flexibility and loose coupling.

• Easy to test and maintain.

The Bad: Class-to-class inheritance.

• Creates tight coupling between parent and child.

• Hard to change without breaking subclasses.

The Ugly: Abstract classes.

• Use sparingly and only when you need shared implementation.

• Prefer interfaces when possible.

46 / 65

Q:

What can you say about the following program?

public interface Animal {

 String makeSound() {

 return "Heresy!";

 }

}

public class Cat extends Animal {

 public String makeSound() {

 return "Meow!";

 }

}

The Object Class

The java.lang.Object Class

In Java, every class implicitly extends the Object class.

Consequently, every Java class has these methods:

boolean equals(Object obj) compares two objects for equality

int hashCode() returns a hash code value for the object

String toString() returns a string representation of the object

and more …

48 / 65

The toString Method

class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public String toString() {

 return "Point(" + this.x + ",

 " + this.y + ")";

 }

}

Without toString:

Point p = new Point(3, 4);

System.out.println(p);

// Prints: Point@5ca881b5

With toString:

Point p = new Point(3, 4);

System.out.println(p);

// Prints: Point(3, 4)

49 / 65

The equals Method

class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public boolean equals(Object obj) {

 if (this == obj) return true;

 if (obj == null) return false;

 if (getClass() != obj.getClass())

 return false;

 Point other = (Point) obj;

 return x == other.x && y == other.y;

 }

}

Without equals:

Point p1 = new Point(3, 4);

Point p2 = new Point(3, 4);

// Prints: true

System.out.println(p1 == p1);

// Prints: false

System.out.println(p1.equals(p2));

With equals:

Point p1 = new Point(3, 4);

Point p2 = new Point(3, 4);

// Prints: true

System.out.println(p1.equals(p2));

50 / 65

The hashCode() Method

The hashCode() method returns an integer hash code for an object.

Key Points:

• Used by hash-based collections (HashMap, HashSet, etc.)

• Objects that are equal must have the same hash code

❗️ Important: If you override equals(), you must also override hashCode()!

51 / 65

Example: Overriding equals and hashCode

class Point {

 private int x;

 private int y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public boolean equals(Object obj) {

 if (this == obj) return true;

 if (obj == null) return false;

 if (getClass() != obj.getClass())

 return false;

 Point other = (Point) obj;

 return x == other.x

 && y == other.y;

 }

}

class Point {

 // ... continued ...

 public int hashCode() {

 return 3 * x + 7 * y;

 }

}

A better way:

class Point {

 // ... continued ...

 public int hashCode() {

 return Objects.hash(x, y);

 }

}

52 / 65

Example: Equality and HashCode

class Person {

 private String firstName;

 private String lastName;

 private int age = 0;

 public Person(String firstName, String lastName) {

 this.firstName = firstName;

 this.lastName = lastName;

 }

 public boolean equals(Object obj) {

 if (this == obj) return true;

 if (obj == null || getClass() != obj.getClass()) return false;

 Person other = (Person) obj;

 return firstName.equals(other.firstName) && lastName.equals(other.lastName);

 }

 public int hashCode() {

 return Objects.hash(firstName, lastName);

 }

}

53 / 65

Q:

What can you say about this class?

class Email {

 private String subject;

 private String sender;

 private String text;

 // ... constructors and methods ...

 public boolean equals(Object obj) {

 if (this == obj) return true;

 if (obj == null || getClass() != obj.getClass()) return false;

 Email other = (Email) obj;

 return subject == other.subject && sender == other.sender;

 }

 public int hashCode() { return Objects.hash(subject, sender); }

}

Packages

What is a Package?

A package is a namespace mechanism for organizing related classes and interfaces.

Packages provide:

Modularity: Related types are grouped into cohesive units.

Namespaces: Classes with the same name can coexist in different packages.

Access control: Package-private visibility controls member accessibility.

Package names use reverse domain names to ensure global uniqueness:

• The domain google.com becomes the package com.google.

• The domain cs.au.dk becomes the package dk.au.cs.

55 / 65

Example: Declaring and Using Packages

We can declare a class in a package:

package dk.au.cs;

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public double getArea() {

 return Math.PI * radius * radius;

 }

}

The class must be stored in dk/au/cs/

Circle.java.

56 / 65

Example: Declaring and Using Packages

We can declare a class in a package:

package dk.au.cs;

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public double getArea() {

 return Math.PI * radius * radius;

 }

}

The class must be stored in dk/au/cs/

Circle.java.

and then we can then import it:

import dk.au.cs.Circle;

public class Main {

 public static void main(String[] args) {

 Circle c = new Circle(5.0);

 System.out.println(c.getArea());

 }

}

The Main class can be stored in any package.

56 / 65

Example: Wildcard Imports

We can import as many classes as we want:

import dk.au.cs.Circle;

import dk.au.cs.Rectangle;

import dk.au.cs.Triangle;

Or use a wildcard import:

import dk.au.cs.*;

57 / 65

Name Clash

What if two packages have classes with the same name?

import dk.au.cs.game.Pool;

import dk.au.cs.swim.Pool;

public class Main {

 public static void main(String[] args) {

 Pool p = new Pool(); // Which Pool?

 }

}

Error: Pool is already defined

58 / 65

Resolving Name Clashes

We can use fully qualified names to resolve the clash:

import dk.au.cs.game.Pool;

public class Main {

 public static void main(String[] args) {

 Pool gamePool = new Pool();

 dk.au.cs.swim.Pool swimPool = new dk.au.cs.swim.Pool();

 }

}

59 / 65

Epilogue

Error of the Week (1/3)

What is wrong here?

public interface Shape {

 double getX();

 double getY();

 void draw();

}

public class Rectangle implements Shape {

 private double x;

 private double y;

 public double getX() { return x; }

 public double getY() { return y; }

 public void darw() { /* ... */ }

}

61 / 65

Error of the Week (1/3)

What is wrong here?

public interface Shape {

 double getX();

 double getY();

 void draw();

}

public class Rectangle implements Shape {

 private double x;

 private double y;

 public double getX() { return x; }

 public double getY() { return y; }

 public void darw() { /* ... */ }

}

Rectangle is not abstract

and does not override

abstract method draw() in

Shape

61 / 65

Error of the Week (2/3)

What is wrong here?

public interface Movable {

 void move(double dx, double dy);

}

public class Ball implements Movable {

 public void move(int dx, int dy) {

 // ...

 }

}

62 / 65

Error of the Week (2/3)

What is wrong here?

public interface Movable {

 void move(double dx, double dy);

}

public class Ball implements Movable {

 public void move(int dx, int dy) {

 // ...

 }

}

Ball is not abstract and

does not override abstract

method move(double,double)

in Movable

62 / 65

Error of the Week (3/3)

What is wrong here?

public abstract class Animal {

 private String name;

 private int age;

 public Animal(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

public class Giraffe extends Animal { }

public class Elephant extends Animal { }

63 / 65

Error of the Week (3/3)

What is wrong here?

public abstract class Animal {

 private String name;

 private int age;

 public Animal(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

public class Giraffe extends Animal { }

public class Elephant extends Animal { }

There is no default

constructor available

in Animal

There is no default

constructor available

in Animal

63 / 65

Live Programming

Live Programming

• Interfaces, Abstract Classes, and Classes

‣ Assignability.

‣ Dynamic method dispatch.

• The @Override annotation and instanceof operator.

• Example: CalendarEvent, Birthday, Meeting, PhysicalMeeting, OnlineMeeting

65 / 65

	Week 10: Outline
	Prologue
	Quote of the Week
	Epigram of the Week
	TODO

	Interfaces
	What is an interface?
	Example: Shape
	Example: Square (1/2)
	Example: Square (2/2)
	Example: Circle
	Example: Triangle
	Subtype Polymorphism (1/3)
	Subtype Polymorphism (2/3)
	Subtype Polymorphism (3/3)
	Example: Using an Interface
	Example: An Array of Shapes (1/2)
	Example: An Array of Shapes (2/2)
	What can you say about this program?
	What are the static and dynamic types of the variables?
	Subtyping and Assignability (1/2)
	Subtyping and Assignability (2/2)
	Multiple Interfaces (1/2)
	Multiple Interfaces (2/2)
	Which of the following assignments are valid?
	Which of the following method calls are valid?
	Example: Animals (1/2)
	Example: Animals (2/2)

	Inheritance
	What is Inheritance?
	Example: Point and ColoredPoint (1/2)
	Example: Point and ColoredPoint (2/2)
	What is Dynamic Method Lookup?
	Example: Dynamic Method Lookup
	The instanceof Operator
	Example: instanceof
	Safe and Unsafe Casts

	Overriding
	What is Overriding?
	Example: Overriding (1/2)
	Example: Overriding (2/2)
	What is super?
	Example: super
	What does this program print?
	What does this program print?
	The @Override Annotation

	Abstract Classes
	What is an Abstract Class?
	Example: Abstract Class (1/3)
	Example: Abstract Class (2/3)
	Example: Abstract Class (3/3)
	Overview: Interfaces, Abstract Classes, and Classes
	What to use?
	What can you say about the following program?

	The Object Class
	The java.lang.Object Class
	The toString Method
	The equals Method
	The hashCode() Method
	Example: Overriding equals and hashCode
	Example: Equality and HashCode
	What can you say about this class?

	Packages
	What is a Package?
	Example: Declaring and Using Packages
	Example: Wildcard Imports
	Name Clash
	Resolving Name Clashes

	Epilogue
	Error of the Week (1/3)
	Error of the Week (2/3)
	Error of the Week (3/3)

	Live Programming
	Live Programming

