
Introduction to Programming
Week 1

Magnus Madsen

Week 1: Your first program

Monday

• Course formalities

• Software is everywhere

Thursday

• Getting started with Java

• Live programming

1 / 68

Prologue

Quote of the week

“To know a second language, is to have a second soul.”

— Charlemagne

3 / 68

Epigram of the week

“To understand a program you must become both the machine and the program.”

— Alan Perlis

4 / 68

Course formalities

A new course

Introduction to Programming (EN, 133285):

• A brand new course running for the first time in fall 2025.

• Focused on the fundamentals of programming (and less focused on Java).

• All materials and lectures in English.

(Will replace the Danish course in 2026.)

6 / 68

Staff

Lecturer: Assoc. Prof. Magnus Madsen (magnusm@cs.au.dk)

Class Time Room Teaching Assistant (TA)
CS1 Tue and Thu 12–14 5125-423 and 5221-012 Maria S. Nielsen
CS2 Tue and Thu 12–14 5342-020 and 1531-019 Simon Olesen
CS3 Tue and Thu 12–14 5335-184 (both days) Valdemar T.T. Knudsen
ITE Wed and Fri 08–10 5125-120 and 5520-112 Tayo K. Krüger
ITE Wed and Fri 08–10 5125-120 and 5520-112 William M. Vestergaard

7 / 68

Staff

Maria Simon Valdemar

Tayo William Heili

8 / 68

Schedule

Lecture every Monday at 14.15-16.00 in 1170–347

Lecture every Thursday at 08.15-10.00 in 1170–347

Deadline for mandatory hand-ins: decided by each class and TA.

9 / 68

Mandatory hand-ins

From the course description:

ℹ️ Students must submit a total of 10 weekly assignments which must be approved.

• The assignments are individual, but you may work together in small groups.

10 / 68

Mandatory hand-ins

The hand-ins are subject to the following requirements:

• The hand-ins must be submitted on Brightspace before the deadline.

• The TA will correct the hand-in, give feedback, and mark PASS or FAIL.

‣ If a hand-in is failed, you must resubmit a hand-in to address the feedback.

• Hand-ins must be submitted on time.

‣ Revised hand-ins must be submitted within a week of receiving the feedback.

If you cannot submit on time, you must proactively e-mail the TA with an explanation.

ℹ️ The hand-ins have no impact on the final grade. They simply have to be approved.

11 / 68

Exam

Exam

The exam consists of two parts:

ℹ️

Part A: An individual take-home programming project. The exam is open-book, i.e.

students may use all materials available except Generative AI. Students may discuss

the project with each other, but may not share any source code.

ℹ️

Part B: An individual written exam. The exam is closed-book, i.e. students may not

use any materials. The scope of the written exam is the entire course syllabus plus

the take-home programming project.

The two parts take place at different times and places.

• You have three days for the take-home programming project.

• You have two hours for the written exam.

13 / 68

Exam

You obtain one grade weighted approximately equally between Part A and Part B.

The Danish Grading System. The so-called “7-trins skalaen”:

Grade Danish English ECTS
12 Fremragende Outstanding A
10 Fortrinligt Excellent B
7 Godt Good C
4 Jævnt OK D

02 Tilstrækkeligt Adequate E
00 Utilstrækkeligt Inadequate Fx
−3 Ringe Poor F

cf. https://ufm.dk/en/education/the-danish-education-system/grading-system

14 / 68

https://ufm.dk/en/education/the-danish-education-system/grading-system

How to prepare for the exam

✔️ I have read and understood the textbook and other material.

✔️ I have solved all weekly exercises and understood them.

✔️ I have completed all mandatory hand-ins and understood the feedback from the TA.

✔️ I have attended lectures, TA classes, and the study cafe.

✔️ Whenever I did not understand something, I asked for help.

If you do these things, you will be successful 🌈 🎉 🥳.

15 / 68

Generative AI

You are probably all familiar with LLMs, e.g. ChatGPT, CoPilot, Gemini, …

You are not permitted to use GenAI for hand-ins nor for the exam.

You are permitted to use GenAI for your learning experience.

• You can ask for explanations of concepts.

• You can ask for hints.

• You can ask for help.

If you use them, please use them responsibly.

16 / 68

Freedom, responsibility, and integrity (1/3)

University is not school.

• You have a lot of freedom, but you are responsible for your own learning.

Actions that are permitted, but not recommended:

• Skipping lectures

• Skipping classes

• Skipping exercises

• Not reading the book

Good luck with the exam, but other than that all is fine 👍️

17 / 68

Freedom, responsibility, and integrity (2/3)

Actions with consequences:

• Not handing in the mandatory hand-ins

• Not handing in the mandatory hand-ins on time (*️)

You fail the course ❌️
• And you cannot attend the re-exam ❌️
• But you can follow the course next year 👍️

(*️) Unless you proactively contact your TA with an acceptable reason.

18 / 68

Freedom, responsibility, and integrity (3/3)

Actions with severe consequences:

• Cheating

‣ e.g. a friend does your hand-ins or exam project.

‣ e.g. a friendly A.I. does your hand-ins or exam project.

‣ …

💀 You will be kicked out of the university 💀

19 / 68

Course description

Course content

Foundational: Understanding what a Java program is, how to compile it, and how to

execute it. Reasoning about whether a program is well-formed and about its behavior.

Imperative Concepts: Writing simple methods using local variables, if-then-else, and for-

and while loops. Writing simple data structures using plain objects and arrays.

Object-Oriented Concepts: Writing simple classes with encapsulated state, getters and

setters, and using interfaces and inheritance.

Programming Techniques: Programming with common data structures, such as lists, sets,

and maps. Applying basic debugging and testing techniques to understand how a program

behaves. Manipulating the file system, including the creation, reading, and writing of files.

21 / 68

Learning objectives (1/2)

After the course, students will be able to:

• Explain how to write a Java computer program, compile it, and execute it.

• Use elementary imperative programming language constructs, including: primitive data

types, local variables, assignment, arrays, if-then-else, and for- and while loops.

• Use elementary object-oriented programming language constructs, including: classes,

interfaces, objects, and methods.

• Use common data structures such as lists, sets, and maps.

22 / 68

Learning objectives (2/2)

After the course, students will be able to:

• Identify, explain, and overcome compiler errors (e.g. syntax, semantic, or type errors).

• Apply programming techniques to write small programs in imperative or object-oriented

style.

• Apply basic debugging and testing techniques to understand and correct program

behavior.

• Apply advanced programming features such as inheritance and generics.

23 / 68

Learning materials

Course website

https://magnus-madsen.github.io/course-intprog/

25 / 68

https://magnus-madsen.github.io/course-intprog/

Textbook

Introduction to Programming in Java (2nd edition).

In the words of the authors:

“… Programming is not difficult to learn and that harnessing the

power of the computer is rewarding …”

❗️ You must obtain the book. The exercises and hand-ins are in it.

❗️ Ensure you get the 2nd edition. The exercises have been renumbered.

26 / 68

Recorded lectures

Bad news: The lectures are – by choice – not recorded 😔

We want to motivate you to participate in the lectures! 🙋

27 / 68

Textbook lectures

The textbook has online lectures at:

• https://www.cubits.ai/collections/106

Each lecture costs 2$. You can buy all of them for 20$.

Q: Is it worth it? Probably not.

Q: Do I get paid for this commercial? No.

Q: Does the internet have an excessive amount of funny cat videos and Java tutorials? Yes.

28 / 68

https://www.cubits.ai/collections/106

How to spend your time

Total 15 hours

Lectures 4 hours

Reading 3 hours

Exercises 5 hours

Hand-in 3 hours

29 / 68

Getting help

To get help:

• Use the Brightspace web-board for general programming questions.

• Use the Brightspace web-board for general questions about the course.

• Use the Brightspace web-board for questions about the exercises and hand-ins.

• Use the Brightspace web-board for tech support.

• E-mail the teaching assistant for specific questions about the hand-ins.

• E-mail the lecturer for specific questions about the course or the exam.

Tip: Brightspace supports anonymous posts 🐹

30 / 68

What if you already know programming?

• Read the textbook to ensure that you

understand all the details.

• Enjoy the many fun exercises in the textbook.

31 / 68

Q:
Do you have any

questions about the

course?

How to become a programmer

Programming is a contact sport

• You cannot become a cook by reading a book.

• You cannot become a pilot by reading a book.

• You cannot become a surgeon by reading a book.

• …

Learning by doing!

33 / 68

Programming is an intellectual pursuit

• Programs are mathematical objects.

• They are “mind materials” that you build with.

“To understand a program you must become

both the machine and the program.”

— Alan Perlis

34 / 68

Programming is fun

Programming is an immensely rewarding experience.

You write something and then you can immediately run it.

• The short feedback loop is intoxicating.

And when your program finally works:

35 / 68

Software is everywhere

Software is everywhere

37 / 68

Q: How many computers are

there in an Airbus A380?

Why study computer science?

Q: Why do you want to study

computer science?

Q: What is the salary of a recently

graduated computer science student?

Average salary

Monthly Salary

DKK 49,258

USD 7,386

EUR 6,603

JPY 1,076,233

GBP 5,562

39 / 68

Software engineer at Uber Aarhus with yearly bonus

DKK 428,853

USD 35,117

EUR 31,300

JPY 5,099,344

GBP 26,340

40 / 68

Back to programming

Q: What is a program?

Programs vs. systems

We often talk about “programming in the large” vs. “programming in small”.

In this course, we focus on programming in small.

We will learn to write small programs as opposed to entire software systems.

• You must be able to walk before you can run 👶

42 / 68

Getting started with Java

What is Java?

• A programming language

• A compiler (javac)

• A runtime (java)

• A standard library

• …

44 / 68

Why Java?

Java

• has a simple and readable syntax that is easy to learn.

• has a standard library with a lot of built-in functionality.

• has a static type system that catches errors before your program runs.

• has extensive IDE and tooling support.

Java …

• is a general purpose language useful for any type of project.

• is widely adopted with over 16 million projects on GitHub.

• is open source and freely available.

Java …

• programs run reasonably fast (faster than most languages).

• programs run on any platform including Windows, MacOS, and Linux.

45 / 68

Why not Java?

Java …

• is verbose and requires more boilerplate code compared to modern languages.

• was designed in the computing era of the 1990s for single-core desktop systems.

Java …

• lacks support for functional programming compared to modern languages.

• lacks resource and memory safety features found in languages such as Rust.

• faces competition from modern alternatives like Kotlin, Rust, and Scala.

Upshot: You will learn many programming languages over your career.

46 / 68

Your first program

We can write a program:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");

 }

}

and save it in the file HelloWorld.java.

47 / 68

Compiling a program (1/2)

We compile the program by opening a terminal and running the command:

$ javac HelloWorld.java

Surprisingly, if the program compiles successfully there is no output.

Running the javac command produces a HelloWorld.class file.

48 / 68

Compiling a program (2/2)

The HelloWorld.java file is a text-file, but the HelloWorld.class is a binary-file:

0000000 feca beba 0000 4100 1d00 000a 0002 0703

0000010 0400 000c 0005 0106 1000 616a 6176 6c2f

0000020 6e61 2f67 624f 656a 7463 0001 3c06 6e69

0000030 7469 013e 0300 2928 0956 0800 0900 0007

0000040 0c0a 0b00 0c00 0001 6a10 7661 2f61 616c

0000050 676e 532f 7379 6574 016d 0300 756f 0174

0000060 1500 6a4c 7661 2f61 6f69 502f 6972 746e

0000070 7453 6572 6d61 083b 0e00 0001 480c 6c65

0000080 6f6c 202c 6f57 6c72 0a64 1000 1100 0007

0000090 0c12 1300 1400 0001 6a13 7661 2f61 6f69

00000a0 502f 6972 746e 7453 6572 6d61 0001 7007

49 / 68

Decompiling

We can inspect the binary-file with javap:

$ javap -c HelloWorld.class

public class HelloWorld {

 /* ... */

 public static void main(java.lang.String[]);

 Code:

 0: getstatic #7 // Field java/lang/System.out

 3: ldc #13 // String Hello, World

 5: invokevirtual #15 // Method java/io/PrintStream.println

 8: return

}

50 / 68

Run a program

After compiling a program, we can run it by invoking the java command.

$ java HelloWorld

The terminal responds with:

Hello, World

51 / 68

Compile time vs. run time

Compile time is when your program is

under construction. You can get a compile-

time error when your program is not valid

Java code.

Run time is when your program is running.

You can get a runtime error when your

program does not do what you want it to.

52 / 68

Command line arguments

Command line arguments allow the user to specify an input to the program.

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello " + args[0] + "!");

 }

}

Compile

once
$ javac Main.java

Execute with

many inputs

$ java Main Alice $ java Main Bob $ java Main World

Hello Alice! Hello Bob! Hello World!

53 / 68

Programming tools

A programmer’s toolkit consists of many specialized tools that help development:

Essential Tools:
• Command Line Interface (CLI) – Direct

system interaction

• Compilers – Translate source code to executable

form

• Interpreters – Execute code directly without

compilation

• Text Editors – Basic code writing and editing

Advanced Tools:
• Integrated Development Environments

(IDEs) – All-in-one development suite

• Version Control Systems (VCS) – Track

changes and collaboration

• Debuggers – Find and fix runtime errors

• Profilers – Analyze performance bottlenecks

ℹ️
Each tool serves a specific purpose in the software development lifecycle.

We will explore these in detail on the following slides.

54 / 68

CLI

You may be used to opening and interacting

with programs via a Graphical User Interface.

The Command Line Interface is more

powerful and more automatable.

55 / 68

CLI

With the CLI we can combine commands into scripts to automate repetitive tasks.

This script repeatedly

shrinks an image until it

is the desired size.

56 / 68

Interpreters

Interpreters read source code and execute it directly, line by line, without creating a

separate executable file.

How Interpreters Work:

• Read source code directly

• Parse and execute instructions immediately

• No separate compilation step required

• Code runs as soon as you type it

Examples:

• Python (python script.py)

• JavaScript (in web browsers)

• Ruby (ruby script.rb)

• Shell scripts (bash script.sh)

Advantages:

• ✔️ Fast development cycle

• ✔️ Interactive testing (REPL)

• ✔️ Cross-platform portability

• ✔️ Easy debugging

Disadvantages:

• ❌️ Slower execution speed

• ❌️ Runtime error discovery

• ❌️ Requires interpreter

57 / 68

Compilers

Compilers translate code from one language to another.

Usually this is from a high-level human-readable language (such as Java) to a low-level

computer-readable language (such as bytecode or assembly).

public class MyProgram {

 public static void main(String[] args)

}
⇒

0000000 feca beba 0000

0000010 0400 000c 0005

0000020 6e61 2f67 624f

0000030 7469 013e 0300

0000040 0c0a 0b00 0c00

0000050 676e 532f 7379

0000060 1500 6a4c 7661

The low-level language is typically faster for a computer to execute.

58 / 68

Integrated Development Environments (IDEs)

An Integrated Development Environment is like Microsoft Word for programmers.

Programs are just text, but IDEs help to write, organize, test, and run your code.

59 / 68

Version Control Systems (VSCs)

Version Control Systems, such as Git, allow the

programmer to manage multiple versions of a project.

• They track the complete history of your code

changes over time.

• They make it possible to collaborate with others on

the same project.

60 / 68

Debuggers

Debuggers allow us to inspect the state of a program while it is running.

They are often integrated into an IDE.
61 / 68

Profilers

Profilers tracks the time and memory usage of our code.

We can use them to identify and fix bottlenecks – places in our code that run slowly.

For example, a flame graph shows the time spent in each part of a program.

62 / 68

Epilogue

Compiler error of the week (1/2)

What is the problem here?

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

64 / 68

Compiler error of the week (1/2)

What is the problem here?

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

The Java compiler reports:

Main.java:5: error: reached end of file while parsing

Do you understand the issue now?

64 / 68

Compiler error of the week (2/2)

What is the problem here?

$ javac MyProgram.java

$ java MyProgram.class

65 / 68

Compiler error of the week (2/2)

What is the problem here?

$ javac MyProgram.java

$ java MyProgram.class

The terminal reports:

Error: Could not find or load main class MyProgram.class

Caused by: java.lang.ClassNotFoundException: MyProgram.class

Do you understand the issue now?

65 / 68

Live programming

Live programming

Today, we shall see how to:

• compile and run a program with nothing but a text editor, javac, and java.

‣ how to open the terminal.

‣ how to check if Java is correctly installed.

• use IntelliJ IDEA to write a program and run it from the terminal.

• use IntelliJ IDEA to write a program and run it from within IDEA.

• how to have multiple programs in the same IDEA project.

67 / 68

Sources for images and slides

• https://introcs.cs.princeton.edu/java/lectures/

• https://commons.wikimedia.org/wiki/File:HelpDeskHappyBryce.jpg

• https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg

• https://commons.wikimedia.org/wiki/File:Surgeon_performing_robot-assisted_surgery.jpg

• https://commons.wikimedia.org/wiki/File:20210216-ARS-LSC-0506_(51020911508).jpg

• https://commons.wikimedia.org/wiki/File:%E7%96%AF%E7%8B%82%E7%9C%BC%E9%95%9C%E8%9B%87%E8%BF%87%E5%B1%B1%E

8%BD%A6.JPG

• https://commons.wikimedia.org/wiki/File:Daft_Punk_in_2013_2.jpg

• https://commons.wikimedia.org/wiki/File:Claas_Lexion_480-20080806-RM-133439.jpg

• https://www.reddit.com/r/dkloenseddel/comments/1k0l761/softwareingeni%C3%B8r_aarhus/

• https://commons.wikimedia.org/wiki/File:Duke_(Java_mascot)_waving.svg

• https://phdcomics.com/comics/archive.php?comicid=1531

68 / 68

https://introcs.cs.princeton.edu/java/lectures/
https://commons.wikimedia.org/wiki/File:HelpDeskHappyBryce.jpg
https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg
https://commons.wikimedia.org/wiki/File:Surgeon_performing_robot-assisted_surgery.jpg
https://commons.wikimedia.org/wiki/File:20210216-ARS-LSC-0506_(51020911508).jpg
https://commons.wikimedia.org/wiki/File:%E7%96%AF%E7%8B%82%E7%9C%BC%E9%95%9C%E8%9B%87%E8%BF%87%E5%B1%B1%E8%BD%A6.JPG
https://commons.wikimedia.org/wiki/File:%E7%96%AF%E7%8B%82%E7%9C%BC%E9%95%9C%E8%9B%87%E8%BF%87%E5%B1%B1%E8%BD%A6.JPG
https://commons.wikimedia.org/wiki/File:Daft_Punk_in_2013_2.jpg
https://commons.wikimedia.org/wiki/File:Claas_Lexion_480-20080806-RM-133439.jpg
https://www.reddit.com/r/dkloenseddel/comments/1k0l761/softwareingeni%C3%B8r_aarhus/
https://commons.wikimedia.org/wiki/File:Duke_(Java_mascot)_waving.svg
https://phdcomics.com/comics/archive.php?comicid=1531

	Week 1: Your first program
	Monday
	Thursday

	Prologue
	Quote of the week
	Epigram of the week

	Course formalities
	A new course
	Staff
	Schedule
	Mandatory hand-ins

	Exam
	Exam
	Exam
	How to prepare for the exam
	Generative AI
	Freedom, responsibility, and integrity (1/3)
	Freedom, responsibility, and integrity (2/3)
	Freedom, responsibility, and integrity (3/3)

	Course description
	Course content
	Learning objectives (1/2)
	Learning objectives (2/2)

	Learning materials
	Course website
	Textbook
	Recorded lectures
	Textbook lectures
	How to spend your time
	Getting help
	What if you already know programming?
	 Do you have any questions about the course?

	How to become a programmer
	Programming is a contact sport
	Programming is an intellectual pursuit
	Programming is fun

	Software is everywhere
	Software is everywhere
	 How many computers are there in an Airbus A380?

	Why study computer science?
	 Why do you want to study computer science?
	 What is the salary of a recently graduated computer science student?
	Average salary
	Software engineer at Uber Aarhus with yearly bonus

	Back to programming
	 What is a program?
	Programs vs. systems

	Getting started with Java
	What is Java?
	Why Java?
	Why not Java?
	Your first program
	Compiling a program (1/2)
	Compiling a program (2/2)
	Decompiling
	Run a program
	Compile time vs. run time
	Command line arguments
	Programming tools
	CLI
	Interpreters
	Compilers
	Integrated Development Environments (IDEs)
	Version Control Systems (VSCs)
	Debuggers
	Profilers

	Epilogue
	Compiler error of the week (1/2)
	Compiler error of the week (2/2)

	Live programming
	Live programming
	Sources for images and slides

