Introduction to Programming
Exam Project 2025

Magnus Madsen

magnus@cs.au.dk

Formalia

You are to solve all of the programming problems described below. You must write
several Java programs and document them using program comments. You should put
each program in its own package. You should also describe any simplifications, omissions,
or design choices you make, and these explanations should be included as program
comments rather than in a separate report.

Requirements. The programs must be written in Java and should be well-written,
well-structured, and clearly explained. You are not permitted to include any code
from external sources, including books, papers, the internet, or fellow students. You
are specifically permitted to use code from the textbook, e.g. Stdbraw. Your unique
anonymous identifier must be included at the top of every file.

e You must hand-in the source code of your Java programs.

e Your Java programs must compile.
GenAl. Use of GenerativeAl is not permitted.

Individuality. You must write your programs alone. You are welcome to discuss the
problems with fellow students. Discussion means talking, not programming.

Workload. The expected workload is three days.

Submission. You must submit a zip-file that contains the source code of your programs.
Let me repeat. A single zip-file, not any other type of archive file.

If you use Intellij IDEA, you are encouraged to include the entire project folder.

WiseFlow. You must submit your project using WiseFlow. If you are unable to submit
your project, you must immediately contact:

Studieservice.Nat-Tech@Qau.dk

You cannot submit your project by writing to the lecturer.



1 Tic-Tac-Toe

Objective: You are to implement a simple tic-tac-toe game that runs in the terminal.

Problem 1.1. Write a class TicTacToe with a main method that expects a single command
line argument n which is the size of the tic-tac-toe board. You should check that n is an
integer and lies in the interval [1,8]. Otherwise report an error to the user.

Note: The board is between 1 x 1 and 8 X 8 in size.

Problem 1.2. Add a method to print a tic-tac-toe board. Use x and o to represent the
two players of the game. See below for an example. Show the initial empty tic-tac-toe
board when the program starts.

Problem 1.3. Use stdin to read a move from the player, i.e. a row and column position
on the board where an x should be placed. Show the updated board.

Problem 1.4. Add checks to ensure that a move is valid:
e The position must unoccupied (i.e. no x or o is already there.)

e The position must be within bounds of the board.

e If a move is invalid, print an error to the user.

Problem 1.5. Add a loop that repeatedly asks the x player for a move. After each move,
check if the player has won or lost, or it is a draw (i.e. the board is full).
Note: A player has won if they have 3 consecutive pieces in any direction.

Problem 1.6. Add a simple Al opponent. You may choose any strategy, such as:

e Randomly placing a piece on the board.

e Using an optimal winning strategy.

Ultimately, it should be possible to play tic-tac-toe from the terminal. For example:

$ java TicTacToe 4 Your move (row col): 0 1
X X .
.0 .
Your move (row col): O O AI plays: (2, 2)
X ... X X .
.o .
.o .
AI plays: (1, 1) Your move (row col): 0 2
X ... X X X .
.o .. .o .
.o .
You win!



2 Bouncing Ball

Objective: You are to implement a bouncing ball animation.

Problem 2.1. Write a program Animation that implements a bouncing ball animation
using the stdbraw API. A single ball is placed in the middle of the canvas and moves in a
random direction. When the ball hits one of the walls, i.e. the boundaries of the canvas,
it bounces away from the wall.

e The canvas must be at least 800 x 600 pixels.
e Use double buffering to ensure that the animation is smooth.

e The ball must move in a random direction for each run of the program.

You are welcome to use the textbook example as a starting point.

Problem 2.2. Extend the program such that the “Window Title” displays the number
of times the ball has collided with a wall. For example: "Collisions: 17".

Problem 2.3. Draw a trail, like a comet, behind the ball. The trail should (a) have
the same color as the ball and gradually fade-out, (b) get smaller and smaller, and
(c) ultimately disappear entirely.

Hint: Use a LinkedList to store the last n positions of the ball.

Problem 2.4. Support multiple balls. The balls should have different colors and the
animation should start with two balls. For now, balls are allowed to overlap and pass
through each other.

Hint: Add a Bal1 class with with fields for the Ball’s position, color, velocity, and trail.
You can then store a list of balls.

Problem 2.5. When the mouse is pressed, create a new ball with a random color and
moving in a random direction.

Hint: You may want to use StdDraw.isMousePressed, StdDraw.mouseX, and StdDraw.mouseY.

Problem 2.6. Remove one ball when two balls collide (i.e. overlap). You may choose
which ball to remove.



3 Texas Hold 'Em

Objective: You are to implement a simplified version of the Texas Hold ’Em card game.

In Texas Hold ’Em, we have two players, each with two hole cards, and there are five
community cards shared for everyone.

Problem 3.1. We use a simplified deck of cards with 48 cards, each uniquely identified
by two attributes:

e rank — the value of the card, which is a number between 1 and 12 (inclusive).

e suit — the suite of the card. The deck has four suits: Earth, Air, Fire, and Water.

Write a class Card that stores the rank and suit of a card. Ensure that your class has
an appropriate constructor, appropriate getter methods, and and tostring method.

You may add additional data types, if you want.

Problem 3.2. Write a program TexasHoldEm to read a text file with the structure:

<CommunityCardl> ... <CommunityCardb>
<HoleCardl> <HoleCard2>

that prints out the description of the cards. For example, if hands.txt contains:

A9 W7 E5 A7 F6
E4 A3

Running java TexasHoldEm < hands.txt should print:

Community cards: 9 of Air, 7 of Water, 5 of Earth, 7 of Air, 6 of Fire
Hole cards: 4 of Earth, 3 of Air

You can assume that the input is always valid. The cards can be printed in any order.

Problem 3.3. The cards in our modified deck has a total order. We order them first by
its rank (with 1 being the lowest and 12 being the highest), and then by suit (with earth
being the lowest, followed by air, fire, and finally water being the highest).

e Add equals and hashCode methods to the card class.
e Implement the Comparable interface for the card class using the above total order.

Modify the TexasHoldEm program such that the community cards and hole cards are

printed in increasing order. For example, for the previous input you should now print:
Community cards: 5 of Earth, 6 of Fire, 7 of Air, 7 of Water, 9 of Air
Hole cards: 3 of Air, 4 of Earth

If the community cards and/or hole cards contain duplicates print an error message to
the user instead.



Problem 3.4. In Texas Hold ’Em, players try to make the best possible five-card hand
from the best combination of cards chosen from the hole and community cards. In our
game, we have four kinds of poker hands in decreasing order of ranking:

1. A Flush is a 5-card hand all of the same suit
2. A Straight is a 5-card hand with sequential rank
3. A Pair is a hand with two cards of the same rank

4. A High Card is a hand that does not fall into any other category

Write methods to recognize poker hands given some number of cards. You can assume
that the card[] array is never null, but might contain fewer or more than 5 cards.

® Card getFlushWithHighCard(Card[] a) Returns null if there is no flush. Otherwise
returns the highest card in the flush. If there are multiple flushes, return the highest
ranked flush card.

® Card getStraightWithHighCard(Card[] a) Returns null if there is no straight. Other-
wise returns the highest card in the straight. If there are multiple straights, return
the highest ranked straight card.

® Card getPairWithHighCard(Card[] a) Returns null if there is no pair. Otherwise re-
turns the highest card in the pair. If there are multiple pairs, return the highest
ranked pair card.

® Card getHighCard(Card[] a) Returns the highest card in the hand, or null otherwise.

Extend your program TexasHoldEm to also output the description of the best poker hand
formed by choosing five cards from the hole and community cards. For example:
Community cards: 5 of Earth, 6 of Fire, 7 of Air, 7 of Water, 9 of Air

Hole cards: 3 of Air, 4 of Earth
Classification: Straight with 7 of Water



